Dynamic Multi-hop Clustering in a Wireless Sensor Network: Performance Improvement

Dynamic Multi-hop Clustering in a Wireless Sensor Network: Performance Improvement A cluster-based model is preferable in wireless sensor network due to its ability to reduce energy consumption. However, managing the nodes inside the cluster in a dynamic environment is an open challenge. Selecting the cluster heads (CHs) is a cumbersome process that greatly affects the network performance. Although there are several studies that propose CH selection methods, most of them are not appropriate for a dynamic clustering environment. To avoid this problem, several methods were proposed based on intelligent algorithms such as fuzzy logic, genetic algorithm (GA), and neural networks. However, these algorithms work better within a single-hop clustering model framework, and the network lifetime constitutes a big issue in case of multi-hop clustering environments. This paper introduces a new CH selection method based on GA for both single-hop and the multi-hop cluster models. The proposed method is designed to meet the requirements of dynamic environments by electing the CH based on six main features, namely, (1) the remaining energy, (2) the consumed energy, (3) the number of nearby neighbors, (4) the energy aware distance, (5) the node vulnerability, and (6) the degree of mobility. We shall see how the corresponding results show that the proposed algorithm greatly extends the network lifetime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Dynamic Multi-hop Clustering in a Wireless Sensor Network: Performance Improvement

Loading next page...
 
/lp/springer_journal/dynamic-multi-hop-clustering-in-a-wireless-sensor-network-performance-0MVNENQgD7
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4023-8
Publisher site
See Article on Publisher Site

Abstract

A cluster-based model is preferable in wireless sensor network due to its ability to reduce energy consumption. However, managing the nodes inside the cluster in a dynamic environment is an open challenge. Selecting the cluster heads (CHs) is a cumbersome process that greatly affects the network performance. Although there are several studies that propose CH selection methods, most of them are not appropriate for a dynamic clustering environment. To avoid this problem, several methods were proposed based on intelligent algorithms such as fuzzy logic, genetic algorithm (GA), and neural networks. However, these algorithms work better within a single-hop clustering model framework, and the network lifetime constitutes a big issue in case of multi-hop clustering environments. This paper introduces a new CH selection method based on GA for both single-hop and the multi-hop cluster models. The proposed method is designed to meet the requirements of dynamic environments by electing the CH based on six main features, namely, (1) the remaining energy, (2) the consumed energy, (3) the number of nearby neighbors, (4) the energy aware distance, (5) the node vulnerability, and (6) the degree of mobility. We shall see how the corresponding results show that the proposed algorithm greatly extends the network lifetime.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Mar 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off