Dynamic monitoring of optimal locations in road network databases

Dynamic monitoring of optimal locations in road network databases Optimal location (OL) queries are a type of spatial queries that are particularly useful for the strategic planning of resources. Given a set of existing facilities and a set of clients, an OL query asks for a location to build a new facility that optimizes a certain cost metric (defined based on the distances between the clients and the facilities). Several techniques have been proposed to address OL queries, assuming that all clients and facilities reside in an $$L_p$$ L p space . In practice, however, movements between spatial locations are usually confined by the underlying road network, and hence, the actual distance between two locations can differ significantly from their $$L_p$$ L p distance. Motivated by the deficiency of the existing techniques, this paper presents a comprehensive study on OL queries in road networks. We propose a unified framework that addresses three variants of OL queries that find important applications in practice, and we instantiate the framework with several novel query processing algorithms. We further extend our framework to efficiently monitor the OLs when locations for facilities and/or clients have been updated. Our dynamic update methods lead to efficient answering of continuous optimal location queries. We demonstrate the efficiency of our solutions through extensive experiments with large real data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Dynamic monitoring of optimal locations in road network databases

Loading next page...
 
/lp/springer_journal/dynamic-monitoring-of-optimal-locations-in-road-network-databases-RbR3aPpkKA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0347-5
Publisher site
See Article on Publisher Site

Abstract

Optimal location (OL) queries are a type of spatial queries that are particularly useful for the strategic planning of resources. Given a set of existing facilities and a set of clients, an OL query asks for a location to build a new facility that optimizes a certain cost metric (defined based on the distances between the clients and the facilities). Several techniques have been proposed to address OL queries, assuming that all clients and facilities reside in an $$L_p$$ L p space . In practice, however, movements between spatial locations are usually confined by the underlying road network, and hence, the actual distance between two locations can differ significantly from their $$L_p$$ L p distance. Motivated by the deficiency of the existing techniques, this paper presents a comprehensive study on OL queries in road networks. We propose a unified framework that addresses three variants of OL queries that find important applications in practice, and we instantiate the framework with several novel query processing algorithms. We further extend our framework to efficiently monitor the OLs when locations for facilities and/or clients have been updated. Our dynamic update methods lead to efficient answering of continuous optimal location queries. We demonstrate the efficiency of our solutions through extensive experiments with large real data.

Journal

The VLDB JournalSpringer Journals

Published: Oct 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off