Dynamic mechanical thermal analysis (DMTA) of aqueous phenol formaldehyde (PF) resin modified by nano copper oxide (CuO)

Dynamic mechanical thermal analysis (DMTA) of aqueous phenol formaldehyde (PF) resin modified by... To improve the bio-resistance of engineered wood composites products via gluing process, aqueous phenol formaldehyde (PF) resin was modified using nano CuO containing alkane surfactant and polyvinyl alcohol (PVA) 17-99. The modified PF system was analyzed by dynamic mechanical thermal analysis, and the mechanical properties of the bonded plywood panels including tensile strength, modulus of rupture (MOR), modulus of elasticity (MOE) and shear strength under five test conditions were also evaluated. The results indicated that the addition of nano CuO incorporating PVA 17-99 separated the gel point and vitrification point in the curve of tan δ, which is related to the delaying of moisture loss in modified PF resin during the curing process. The modification showed adverse effect on tensile strength but only a minimal influence on MOR and MOE. Additionally, PVA 17-99 reduced the water resistance of cured PF resins. However, with the test conditions of dipping in 100 °C water for 6 h, then drying for 20 h at 63 °C in air, followed by dipping in 100 °C water for 4 h, PVA consolidated the re-curing effect on the PF resin and compensated the strength loss from hydrolysis. Thus, the modified PF system not only guaranteed bio-resistance of glued wood composites via CuO, but also has the potential for developing self-curing wood composites being applied as structural construction materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Wood and Wood Products Springer Journals

Dynamic mechanical thermal analysis (DMTA) of aqueous phenol formaldehyde (PF) resin modified by nano copper oxide (CuO)

Loading next page...
 
/lp/springer_journal/dynamic-mechanical-thermal-analysis-dmta-of-aqueous-phenol-GLNkZBkAuS
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Wood Science & Technology; Ceramics, Glass, Composites, Natural Materials; Operating Procedures, Materials Treatment
ISSN
0018-3768
eISSN
1436-736X
D.O.I.
10.1007/s00107-018-1318-8
Publisher site
See Article on Publisher Site

Abstract

To improve the bio-resistance of engineered wood composites products via gluing process, aqueous phenol formaldehyde (PF) resin was modified using nano CuO containing alkane surfactant and polyvinyl alcohol (PVA) 17-99. The modified PF system was analyzed by dynamic mechanical thermal analysis, and the mechanical properties of the bonded plywood panels including tensile strength, modulus of rupture (MOR), modulus of elasticity (MOE) and shear strength under five test conditions were also evaluated. The results indicated that the addition of nano CuO incorporating PVA 17-99 separated the gel point and vitrification point in the curve of tan δ, which is related to the delaying of moisture loss in modified PF resin during the curing process. The modification showed adverse effect on tensile strength but only a minimal influence on MOR and MOE. Additionally, PVA 17-99 reduced the water resistance of cured PF resins. However, with the test conditions of dipping in 100 °C water for 6 h, then drying for 20 h at 63 °C in air, followed by dipping in 100 °C water for 4 h, PVA consolidated the re-curing effect on the PF resin and compensated the strength loss from hydrolysis. Thus, the modified PF system not only guaranteed bio-resistance of glued wood composites via CuO, but also has the potential for developing self-curing wood composites being applied as structural construction materials.

Journal

European Journal of Wood and Wood ProductsSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off