Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this work, dynamic mechanical properties of the grown bacterial cellulose (BC) nanofibers were investigated. BC pellicles were fabricated using bacterial fermentation (Gluconacetobacter xylinus). The morphology results confirmed that the dried BC at ambient conditions could be categorized as a xerogel. The thermal dynamic mechanical analysis results indicated that the bound water in bacterial cellulose structure had a very significant effect on thermal and dynamic mechanical properties of BC pellicles. The results of dehydration kinetics study showed that the main mechanism governing water loss of BC was Fickian diffusion. The glass transition temperatures (T g) of the BC dried at 25 °C (ambient temperature) and 105 °C were estimated − 33 and − 18 °C, respectively. This discrepancy can be attributed to the plasticizing effect of the bound water of BC dried at ambient temperature. Furthermore, the results indicated that its modulus drop smaller than one order of magnitude can be attributed to its high crystalline nature. The storage modulus versus frequency increased due to the limitation of the relaxation process of the polymer chains. Moreover, the relaxation time distribution was achieved from the slope of the modulus master curve versus logarithmic frequency. As a result, BC exhibited a solid-like behavior.
Iranian Polymer Journal – Springer Journals
Published: May 19, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.