Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering

Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry–Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering

Loading next page...
 
/lp/springer_journal/dynamic-measurement-of-temperature-velocity-and-density-in-hot-jets-DiiruZ3GUr
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0708-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial