Dynamic hysteresis control of lift on a pitching wing

Dynamic hysteresis control of lift on a pitching wing Dynamic hysteresis appearing in the lift force during pitching maneuvers is distinctly different from conventional static hysteresis. The size and shape of dynamic hysteresis loops are dependent on the degree of flow attachment, the dimensionless pitching frequency, and two time delays associated with the flow separation process. A linearized version of the Goman–Khrabrov model is derived and shown to capture the dynamic hysteresis characteristics when the pitching amplitude is small. Closed-loop control using a linearized version of the Goman–Khrabrov model is demonstrated, which incorporates a disturbance model into the feed-forward controller. The controller is shown to reduce the dynamic hysteresis during periodic pitching, step-up and step-down maneuvers, and quasi-random pitching maneuvers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Dynamic hysteresis control of lift on a pitching wing

Loading next page...
 
/lp/springer_journal/dynamic-hysteresis-control-of-lift-on-a-pitching-wing-XjckjhVrAl
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1982-y
Publisher site
See Article on Publisher Site

Abstract

Dynamic hysteresis appearing in the lift force during pitching maneuvers is distinctly different from conventional static hysteresis. The size and shape of dynamic hysteresis loops are dependent on the degree of flow attachment, the dimensionless pitching frequency, and two time delays associated with the flow separation process. A linearized version of the Goman–Khrabrov model is derived and shown to capture the dynamic hysteresis characteristics when the pitching amplitude is small. Closed-loop control using a linearized version of the Goman–Khrabrov model is demonstrated, which incorporates a disturbance model into the feed-forward controller. The controller is shown to reduce the dynamic hysteresis during periodic pitching, step-up and step-down maneuvers, and quasi-random pitching maneuvers.

Journal

Experiments in FluidsSpringer Journals

Published: May 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off