Dynamic hybrid grooming based on power efficiency in green IP over WDM networks

Dynamic hybrid grooming based on power efficiency in green IP over WDM networks Due to the rapid growth of various applications, the network devices scale and complexity are significantly increased. Meanwhile, to deal with the burst IP traffic, the network devices need to provide continuous services, which will result in the excessive power consumption. Meanwhile, with the development of IP network and intelligent optical switch network, the backbone network tends to be an IP over wavelength-division-multiplexing (WDM) network. Therefore, it has attracted wide interests in both academic and industrial communities to build power-efficient (i.e., green) IP over WDM network, where we can switch several IP-level requests as one unit in the WDM optical layer. This method is called hybrid grooming and it requires less component power than that of electronic IP routers in the IP layer. Under this hybrid approach, the traffic grooming multiplexes many IP-level requests into a high-capacity lightpath; meanwhile the reduction in power consumed by optical-electrical-optical conversions is achieved through optical bypass. However, the power consumed by components used to establish lightpaths should also be considered. One network with the higher power efficiency not only saves more power followed by hybrid grooming but also requires the lower power consumption of establishing lightpaths. In this paper, to improve the power efficiency of dynamic IP over WDM network, we design two kinds of Wavelength Integrated Auxiliary Graphs (WIAGs), each of which contains one Virtual Topology Layer and multiple Wavelength-Plane Layers. Based on WIAGs, we propose two heuristic algorithms named single-hop grooming with considering power efficiency and multi-hop grooming with considering power efficiency (MGPE) since grooming is NP-hard. Simulation results demonstrate that MGPE obtains the higher power efficiency, although it has the slightly higher time complexity; the power efficiency mainly depends on the kind of grooming strategy (single- or multi-hop) we use while the increasing number of available transceivers in each node cannot improve the power efficiency, although it can make blocking probability decrease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Dynamic hybrid grooming based on power efficiency in green IP over WDM networks

Loading next page...
 
/lp/springer_journal/dynamic-hybrid-grooming-based-on-power-efficiency-in-green-ip-over-wdm-QW2iK6o5LD
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-011-0353-8
Publisher site
See Article on Publisher Site

Abstract

Due to the rapid growth of various applications, the network devices scale and complexity are significantly increased. Meanwhile, to deal with the burst IP traffic, the network devices need to provide continuous services, which will result in the excessive power consumption. Meanwhile, with the development of IP network and intelligent optical switch network, the backbone network tends to be an IP over wavelength-division-multiplexing (WDM) network. Therefore, it has attracted wide interests in both academic and industrial communities to build power-efficient (i.e., green) IP over WDM network, where we can switch several IP-level requests as one unit in the WDM optical layer. This method is called hybrid grooming and it requires less component power than that of electronic IP routers in the IP layer. Under this hybrid approach, the traffic grooming multiplexes many IP-level requests into a high-capacity lightpath; meanwhile the reduction in power consumed by optical-electrical-optical conversions is achieved through optical bypass. However, the power consumed by components used to establish lightpaths should also be considered. One network with the higher power efficiency not only saves more power followed by hybrid grooming but also requires the lower power consumption of establishing lightpaths. In this paper, to improve the power efficiency of dynamic IP over WDM network, we design two kinds of Wavelength Integrated Auxiliary Graphs (WIAGs), each of which contains one Virtual Topology Layer and multiple Wavelength-Plane Layers. Based on WIAGs, we propose two heuristic algorithms named single-hop grooming with considering power efficiency and multi-hop grooming with considering power efficiency (MGPE) since grooming is NP-hard. Simulation results demonstrate that MGPE obtains the higher power efficiency, although it has the slightly higher time complexity; the power efficiency mainly depends on the kind of grooming strategy (single- or multi-hop) we use while the increasing number of available transceivers in each node cannot improve the power efficiency, although it can make blocking probability decrease.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Dec 6, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off