Dynamic Establishment of Segmented Protection Paths in Single and Multi-Fiber WDM Mesh Networks

Dynamic Establishment of Segmented Protection Paths in Single and Multi-Fiber WDM Mesh Networks Wavelength division multiplexed (WDM) networks are matured to provide, scalable data centric infrastructure, capable of delivering flexible, value added, high speed and high bandwidth services directly from the optical (WDM) layer. But, providing fault-tolerance at an acceptable level of overhead in these networks has become a critical problem. This is due to the size of the current and future networks and diverse quality of service (QoS) requirements for multimedia and mission critical applications. Several distributed real-time applications require communication services with fault-tolerance apart from guaranteed timeliness at acceptable levels of overhead. Several methods exist in the literature which attempt to guarantee recovery in a timely and resource efficient manner. These methods are centered around a priori reservation of network resources called spare resources along a protection path. This protection path is usually routed from source to destination along a totally link disjoint path from primary path. This paper considers the problem of routing and wavelength assignment (RWA) in wavelength routed WDM optical networks. In particular, we propose an efficient algorithm to select routes and wavelengths to establish dependable connections (D-connections), called segmented protection paths. Our algorithm does not insist on the existence of totally disjoint paths to provide full protection. We present experimental results which suggest that our scheme is attractive enough in terms of average call acceptance ratio, spare wavelength utilization, and number of requests that can be satisfied for a given number of wavelengths assuming that the requests come one at time, and wavelengths are assigned according to fixed ordering. Furthermore, the results suggest that our scheme is practically applicable for medium and large sized networks, which improves number of requests that can be satisfied and helps in providing better QoS guarantees such as bounded failure recovery time and propagation delays without any compromise on the level of fault-tolerance for a given number of wavelengths and fibers. We conduct extensive simulation experiments to evaluate the effectiveness of the proposed scheme on different networks and compare with existing methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Dynamic Establishment of Segmented Protection Paths in Single and Multi-Fiber WDM Mesh Networks

Loading next page...
Kluwer Academic Publishers
Copyright © 2005 by Springer Science+Business Media, Inc.
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial