Dynamic cloud resource management for efficient media applications in mobile computing environments

Dynamic cloud resource management for efficient media applications in mobile computing environments Single-instruction-set architecture (Single-ISA) heterogeneous multi-core processors (HMP) are superior to Symmetric Multi-core processors in performance per watt. They are popular in many aspects of the Internet of Things, including mobile multimedia cloud computing platforms. One Single-ISA HMP integrates both fast out-of-order cores and slow simpler cores, while all cores are sharing the same ISA. The quality of service (QoS) is most important for virtual machine (VM) resource management in multimedia mobile computing, particularly in Single-ISA heterogeneous multi-core cloud computing platforms. Therefore, in this paper, we propose a dynamic cloud resource management (DCRM) policy to improve the QoS in multimedia mobile computing. DCRM dynamically and optimally partitions shared resources according to service or application requirements. Moreover, DCRM combines resource-aware VM allocation to maximize the effectiveness of the heterogeneous multi-core cloud platform. The basic idea for this performance improvement is to balance the shared resource allocations with these resources requirements. The experimental results show that DCRM behaves better in both response time and QoS, thus proving that DCRM is good at shared resource management in mobile media cloud computing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Personal and Ubiquitous Computing Springer Journals

Dynamic cloud resource management for efficient media applications in mobile computing environments

Loading next page...
 
/lp/springer_journal/dynamic-cloud-resource-management-for-efficient-media-applications-in-eC0UdmKRLU
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Computer Science; User Interfaces and Human Computer Interaction; Computer Science, general; Personal Computing; Mobile Computing
ISSN
1617-4909
eISSN
1617-4917
D.O.I.
10.1007/s00779-018-1118-5
Publisher site
See Article on Publisher Site

Abstract

Single-instruction-set architecture (Single-ISA) heterogeneous multi-core processors (HMP) are superior to Symmetric Multi-core processors in performance per watt. They are popular in many aspects of the Internet of Things, including mobile multimedia cloud computing platforms. One Single-ISA HMP integrates both fast out-of-order cores and slow simpler cores, while all cores are sharing the same ISA. The quality of service (QoS) is most important for virtual machine (VM) resource management in multimedia mobile computing, particularly in Single-ISA heterogeneous multi-core cloud computing platforms. Therefore, in this paper, we propose a dynamic cloud resource management (DCRM) policy to improve the QoS in multimedia mobile computing. DCRM dynamically and optimally partitions shared resources according to service or application requirements. Moreover, DCRM combines resource-aware VM allocation to maximize the effectiveness of the heterogeneous multi-core cloud platform. The basic idea for this performance improvement is to balance the shared resource allocations with these resources requirements. The experimental results show that DCRM behaves better in both response time and QoS, thus proving that DCRM is good at shared resource management in mobile media cloud computing.

Journal

Personal and Ubiquitous ComputingSpringer Journals

Published: May 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off