Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like 3D architecture prepared from graphene oxide and MoS2

Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like... The authors describe a dye-sensitized photoelectrochemical immunoassay for the tumor marker carcinoembryonic antigen (CEA). The method employs the rhodamine dye Rh123 with red color and absorption maximum at 500 nm for spectral sensitization, and a 3D nanocomposite prepared from graphene oxide and MoS2 acting as the photoelectric conversion layer. The nanocomposite with flower-like 3D architectures was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. A photoelectrochemical sandwich immunoassay was developed that is based on the use of the nanocomposite and based on the specific binding of antibody and antigen, and by using a secondary antibody labeled with Rh123 and CdS (Ab2-Rh123@CdS). Under optimal conditions and at a typical working voltage of 0 V (vs. Hg/HgCl2), the photocurrent increases linearly 10 pg mL−1 to 80 ng mL−1 CEA concentration range, with a 3.2 pg mL−1 detection limit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like 3D architecture prepared from graphene oxide and MoS2

Loading next page...
 
/lp/springer_journal/dye-sensitized-photoelectrochemical-immunosensor-for-the-tumor-marker-8jz0NT9QkY
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Austria, part of Springer Nature
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-018-2853-z
Publisher site
See Article on Publisher Site

Abstract

The authors describe a dye-sensitized photoelectrochemical immunoassay for the tumor marker carcinoembryonic antigen (CEA). The method employs the rhodamine dye Rh123 with red color and absorption maximum at 500 nm for spectral sensitization, and a 3D nanocomposite prepared from graphene oxide and MoS2 acting as the photoelectric conversion layer. The nanocomposite with flower-like 3D architectures was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. A photoelectrochemical sandwich immunoassay was developed that is based on the use of the nanocomposite and based on the specific binding of antibody and antigen, and by using a secondary antibody labeled with Rh123 and CdS (Ab2-Rh123@CdS). Under optimal conditions and at a typical working voltage of 0 V (vs. Hg/HgCl2), the photocurrent increases linearly 10 pg mL−1 to 80 ng mL−1 CEA concentration range, with a 3.2 pg mL−1 detection limit.

Journal

Microchimica ActaSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off