Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: preparation, characterization, adsorption, kinetics, and thermodynamics

Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: preparation,... In pursuit of improving performance of the methylene blue adsorption process, the potential of a novel 4A-zeolite/polyvinyl alcohol (PVA) membrane adsorbent was investigated. Adding 4A-zeolite particles to the PVA membrane adsorbent provided an effective structure for the adsorptive membrane in dye removal processes. Effect of zeolite content was also studied via synthesis of different mixed matrix membrane adsorbents (MMMAs) with 5, 10, 15, and 20 wt% 4A-zeolite content. Morphology of MMMAs was analyzed by scanning electron microscope and the intermolecular interactions were determined by Fourier transform infrared spectroscopy. X-ray diffraction was performed to determine the crystal structure of MMMAs. For the sake of finding optimum condition, the adsorption capacity was examined at various operating parameters, such as contact time, temperature, pH, and initial concentration. The maximum value of the adsorption capacity (q e) of 41.08 mg g−1 and the highest removal efficiency of 87.41 % were obtained by applying 20 wt% loading of 4A-zeolite. The experimental data were fitted well with the Freundlich adsorption isotherm model (R 2 = 0.9917) compared with the Langmuir (R 2 = 0.9489) and the Tempkin (R 2 = 0.8886) adsorption isotherm models, and the adsorption kinetic data verified the best fitting with the pseudo-second-order model (R 2 = 0.9999). The estimated data for Gibb’s free energy (ΔG°) showed that the adsorption process is spontaneous at lower temperature values and non-spontaneous at higher temperature values. Other evaluated thermodynamic parameters such as changing in enthalpy (ΔH°) and entropy (ΔS°) revealed that the adsorption process is exothermic with an increase in orderliness at the solid/solution interface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: preparation, characterization, adsorption, kinetics, and thermodynamics

Loading next page...
 
/lp/springer_journal/dye-removal-using-4a-zeolite-polyvinyl-alcohol-mixed-matrix-membrane-16FNcfwA5u
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2362-1
Publisher site
See Article on Publisher Site

Abstract

In pursuit of improving performance of the methylene blue adsorption process, the potential of a novel 4A-zeolite/polyvinyl alcohol (PVA) membrane adsorbent was investigated. Adding 4A-zeolite particles to the PVA membrane adsorbent provided an effective structure for the adsorptive membrane in dye removal processes. Effect of zeolite content was also studied via synthesis of different mixed matrix membrane adsorbents (MMMAs) with 5, 10, 15, and 20 wt% 4A-zeolite content. Morphology of MMMAs was analyzed by scanning electron microscope and the intermolecular interactions were determined by Fourier transform infrared spectroscopy. X-ray diffraction was performed to determine the crystal structure of MMMAs. For the sake of finding optimum condition, the adsorption capacity was examined at various operating parameters, such as contact time, temperature, pH, and initial concentration. The maximum value of the adsorption capacity (q e) of 41.08 mg g−1 and the highest removal efficiency of 87.41 % were obtained by applying 20 wt% loading of 4A-zeolite. The experimental data were fitted well with the Freundlich adsorption isotherm model (R 2 = 0.9917) compared with the Langmuir (R 2 = 0.9489) and the Tempkin (R 2 = 0.8886) adsorption isotherm models, and the adsorption kinetic data verified the best fitting with the pseudo-second-order model (R 2 = 0.9999). The estimated data for Gibb’s free energy (ΔG°) showed that the adsorption process is spontaneous at lower temperature values and non-spontaneous at higher temperature values. Other evaluated thermodynamic parameters such as changing in enthalpy (ΔH°) and entropy (ΔS°) revealed that the adsorption process is exothermic with an increase in orderliness at the solid/solution interface.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 24, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off