Dual-tracer fluorescence thermometry measurements in a heated channel

Dual-tracer fluorescence thermometry measurements in a heated channel The exponential growth of component density in microelectronics has renewed interest in compact and high heat flux thermal management technologies that can handle local heat fluxes exceeding 1 kW/cm2. Accurate and spatially resolved thermometry techniques that can measure liquid-phase temperatures without disturbing the coolant flow are important in developing new heat exchangers employing forced-liquid and evaporative cooling. This paper describes water temperature measurements using dual-tracer fluorescence thermometry (DFT) with fluorescein and sulforhodamine B in laminar Poiseuille flow through polydimethyl siloxane-glass channels heated on one side. The major advantage of using the ratio of the signals from these two fluorophores is their temperature sensitivity of 4.0–12% per °C—a significant improvement over previous DFT studies at these spatial resolutions. For an in-plane spatial resolution of 30 μm, the average experimental uncertainties in the temperature data are estimated to be 0.3°C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Dual-tracer fluorescence thermometry measurements in a heated channel

Loading next page...
 
/lp/springer_journal/dual-tracer-fluorescence-thermometry-measurements-in-a-heated-channel-hGzVHij7hY
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0853-9
Publisher site
See Article on Publisher Site

Abstract

The exponential growth of component density in microelectronics has renewed interest in compact and high heat flux thermal management technologies that can handle local heat fluxes exceeding 1 kW/cm2. Accurate and spatially resolved thermometry techniques that can measure liquid-phase temperatures without disturbing the coolant flow are important in developing new heat exchangers employing forced-liquid and evaporative cooling. This paper describes water temperature measurements using dual-tracer fluorescence thermometry (DFT) with fluorescein and sulforhodamine B in laminar Poiseuille flow through polydimethyl siloxane-glass channels heated on one side. The major advantage of using the ratio of the signals from these two fluorophores is their temperature sensitivity of 4.0–12% per °C—a significant improvement over previous DFT studies at these spatial resolutions. For an in-plane spatial resolution of 30 μm, the average experimental uncertainties in the temperature data are estimated to be 0.3°C.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 13, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off