Dual Role of Prostaglandins (PGE2) in Regulation of Channel Density and Open Probability of Epithelial Na+ Channels in Frog Skin (R. pipiens)

Dual Role of Prostaglandins (PGE2) in Regulation of Channel Density and Open Probability of... Prostaglandins are important in signaling pathways involved in modulating the rates of Na+ transport in a diverse group of tissues possessing apical membrane epithelial channels. PGE2 is known to cause either stimulation, inhibition or transient stimulatory changes of Na+ transport. We have continued our studies of frog skins that are known to respond to forskolin and PGE2 with large steady-state increases of transport and have used noninvasive methods of blocker-induced noise analysis of Na+ channels to determine their channel densities (N T ) and open probabilities (P o ). In the absence of exogenous hormones, baseline rates of Na+ transport are especially high in scraped skins (R. pipiens pipiens) studied in the fall of the year. Na+ transport was inhibited by indomethacin and by removal of the unstirred layers of the corium (isolated epithelia) alone suggesting that PGE2 is responsible for the sustained and elevated rates of transport in scraped skins. Changes of transport caused by indomethacin, forskolin or PGE2 were unquestionably mediated by considerably larger changes of N T than compensatory changes of P o . Since cAMP caused no change of P o in tissues pretreated with indomethacin, PGE2 appears in this tissue to serve a dual role, increasing the steady state N T by way of cAMP and decreasing P o by unknown mechanisms. Despite appreciable PGE2-related decreases of P o , the net stimulation of transport occurs by a considerably greater cAMP-mediated increase of N T . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Dual Role of Prostaglandins (PGE2) in Regulation of Channel Density and Open Probability of Epithelial Na+ Channels in Frog Skin (R. pipiens)

Loading next page...
 
/lp/springer_journal/dual-role-of-prostaglandins-pge2-in-regulation-of-channel-density-and-Bwi0WVN0h1
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900159
Publisher site
See Article on Publisher Site

Abstract

Prostaglandins are important in signaling pathways involved in modulating the rates of Na+ transport in a diverse group of tissues possessing apical membrane epithelial channels. PGE2 is known to cause either stimulation, inhibition or transient stimulatory changes of Na+ transport. We have continued our studies of frog skins that are known to respond to forskolin and PGE2 with large steady-state increases of transport and have used noninvasive methods of blocker-induced noise analysis of Na+ channels to determine their channel densities (N T ) and open probabilities (P o ). In the absence of exogenous hormones, baseline rates of Na+ transport are especially high in scraped skins (R. pipiens pipiens) studied in the fall of the year. Na+ transport was inhibited by indomethacin and by removal of the unstirred layers of the corium (isolated epithelia) alone suggesting that PGE2 is responsible for the sustained and elevated rates of transport in scraped skins. Changes of transport caused by indomethacin, forskolin or PGE2 were unquestionably mediated by considerably larger changes of N T than compensatory changes of P o . Since cAMP caused no change of P o in tissues pretreated with indomethacin, PGE2 appears in this tissue to serve a dual role, increasing the steady state N T by way of cAMP and decreasing P o by unknown mechanisms. Despite appreciable PGE2-related decreases of P o , the net stimulation of transport occurs by a considerably greater cAMP-mediated increase of N T .

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off