Drought Detection of Regional Nonparametric Standardized Groundwater Index

Drought Detection of Regional Nonparametric Standardized Groundwater Index Groundwater drought index characterizes hydrological drought, aquifer characteristics and human disturbance in the hydrological system. For drought management, the values of standardized groundwater index (SGI) at local and regional scales are usually determined in a specific site and regional area. The SGI in the studied area is influenced mainly by precipitation, hydrogeology, and human disturbance occurring in the high-usage pumping area. The underlying signals of SGI at local and regional scales can therefore be identified using data clustering and decomposition analysis e.g. empirical orthogonal functions (EOFs). Using cluster analysis, the three primary SGI clusters of the investigated aquifer are identified to be situated at the proximal fan, mid-fan, and distal fan areas. With EOF, the meteorological drought pattern and the trend of long-term pumping in the aquifer are also identified. Specifically, the meteorological drought pattern is mainly from the proximal fan, while the over-pumping signal is from the coastal area of the distal fan. The regional SGI integrated with EOF is a useful and direct way for detecting and quantifying groundwater drought. The proposed method for identifying drought signals and sustainable zone for water supply is a substantial step toward an effective regional groundwater resource planning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Management Springer Journals

Drought Detection of Regional Nonparametric Standardized Groundwater Index

Loading next page...
 
/lp/springer_journal/drought-detection-of-regional-nonparametric-standardized-groundwater-S2sowPHIdC
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Hydrogeology; Hydrology/Water Resources; Geotechnical Engineering & Applied Earth Sciences; Atmospheric Sciences; Civil Engineering; Environment, general
ISSN
0920-4741
eISSN
1573-1650
D.O.I.
10.1007/s11269-018-1979-4
Publisher site
See Article on Publisher Site

Abstract

Groundwater drought index characterizes hydrological drought, aquifer characteristics and human disturbance in the hydrological system. For drought management, the values of standardized groundwater index (SGI) at local and regional scales are usually determined in a specific site and regional area. The SGI in the studied area is influenced mainly by precipitation, hydrogeology, and human disturbance occurring in the high-usage pumping area. The underlying signals of SGI at local and regional scales can therefore be identified using data clustering and decomposition analysis e.g. empirical orthogonal functions (EOFs). Using cluster analysis, the three primary SGI clusters of the investigated aquifer are identified to be situated at the proximal fan, mid-fan, and distal fan areas. With EOF, the meteorological drought pattern and the trend of long-term pumping in the aquifer are also identified. Specifically, the meteorological drought pattern is mainly from the proximal fan, while the over-pumping signal is from the coastal area of the distal fan. The regional SGI integrated with EOF is a useful and direct way for detecting and quantifying groundwater drought. The proposed method for identifying drought signals and sustainable zone for water supply is a substantial step toward an effective regional groundwater resource planning.

Journal

Water Resources ManagementSpringer Journals

Published: Apr 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off