Drosophila Ubiquitin C-Terminal Hydrolase Knockdown Model of Parkinson’s Disease

Drosophila Ubiquitin C-Terminal Hydrolase Knockdown Model of Parkinson’s Disease Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide. Many factors have been shown to contribute to its pathogenesis including genetic and environmental factors. Ubiquitin C-terminal hydrolase L1 (UCHL1) is also known to be involved in the pathogenesis of PD. We herein modeled the study of UCHL1 in Drosophila melanogaster and investigated its functions in PD. The specific knockdown of the Drosophila ortholog of UCHL1 (dUCH) in dopaminergic neurons (DA neurons) led to the underdevelopment and/or degeneration of these neurons, specifically in DL1 DA neuron cluster in the larval brain lobe and PPM2, PPM3, PPL2ab, and VUM DA neuron clusters in the adult brain. These defects were followed by a shortage of dopamine in the brain, which subsequently resulted in locomotor dysfunction. The degeneration of DA neurons in dUCH knockdown adult brain, which occurred progressively and severely during the course of aging, mimics the epidemiology of PD. DA neuron and locomotor defects were rescued when dUCH knockdown flies were treated with vitamin C, a well-known antioxidant. These results suggest that dUCH knockdown fly is a promising model for studying the pathogenesis and epidemiology of PD as well as the screening of potential antioxidants for PD therapeutics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Drosophila Ubiquitin C-Terminal Hydrolase Knockdown Model of Parkinson’s Disease

Loading next page...
 
/lp/springer_journal/drosophila-ubiquitin-c-terminal-hydrolase-knockdown-model-of-parkinson-8hAEuncuw5
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-22804-w
Publisher site
See Article on Publisher Site

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide. Many factors have been shown to contribute to its pathogenesis including genetic and environmental factors. Ubiquitin C-terminal hydrolase L1 (UCHL1) is also known to be involved in the pathogenesis of PD. We herein modeled the study of UCHL1 in Drosophila melanogaster and investigated its functions in PD. The specific knockdown of the Drosophila ortholog of UCHL1 (dUCH) in dopaminergic neurons (DA neurons) led to the underdevelopment and/or degeneration of these neurons, specifically in DL1 DA neuron cluster in the larval brain lobe and PPM2, PPM3, PPL2ab, and VUM DA neuron clusters in the adult brain. These defects were followed by a shortage of dopamine in the brain, which subsequently resulted in locomotor dysfunction. The degeneration of DA neurons in dUCH knockdown adult brain, which occurred progressively and severely during the course of aging, mimics the epidemiology of PD. DA neuron and locomotor defects were rescued when dUCH knockdown flies were treated with vitamin C, a well-known antioxidant. These results suggest that dUCH knockdown fly is a promising model for studying the pathogenesis and epidemiology of PD as well as the screening of potential antioxidants for PD therapeutics.

Journal

Scientific ReportsSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off