Dropping Policy with Burst Retransmission to Improve the Throughput of TCP Over Optical Burst-switched Networks

Dropping Policy with Burst Retransmission to Improve the Throughput of TCP Over Optical... A major concern in optical burst-switched (OBS) networks is contention, which occurs when more than one bursts contend for the same data channel at the same time. Due to the bufferless nature of OBS networks, these contentions randomly occur at any degree of congestion in the network. When contention occurs at any core node, the core node drops bursts according to its dropping policy. Burst loss in OBS networks significantly degrades the throughput of TCP sources in the local access networks because current TCP congestion control mechanisms perform a slow start phase mainly due to contention rather than heavy congestion. However, there has not been much study about the impact of burst loss on the performance of TCP over OBS networks. To improve TCP throughput over OBS networks, we first introduce a dropping policy with burst retransmission that retransmits the bursts dropped due to contention, at the ingress node. Then, we extend the dropping policy with burst retransmission to drop a burst that has experienced fewer retransmissions in the event of contention at a core node in order to reduce the number of events that a TCP source enters the slow start phase due to contention. In addition, we propose to limit the number of retransmissions of each burst to prevent severe congestion. For the performance evaluation of the proposed schemes, we provide an analytic throughput model of TCP over OBS networks. Through simulations as well as analytic modeling, it is shown that the proposed dropping policy with burst retransmission can improve TCP throughput over OBS networks compared with an existing dropping policy without burst retransmission. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Dropping Policy with Burst Retransmission to Improve the Throughput of TCP Over Optical Burst-switched Networks

Loading next page...
 
/lp/springer_journal/dropping-policy-with-burst-retransmission-to-improve-the-throughput-of-Ma63LTZsvm
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-0012-7
Publisher site
See Article on Publisher Site

Abstract

A major concern in optical burst-switched (OBS) networks is contention, which occurs when more than one bursts contend for the same data channel at the same time. Due to the bufferless nature of OBS networks, these contentions randomly occur at any degree of congestion in the network. When contention occurs at any core node, the core node drops bursts according to its dropping policy. Burst loss in OBS networks significantly degrades the throughput of TCP sources in the local access networks because current TCP congestion control mechanisms perform a slow start phase mainly due to contention rather than heavy congestion. However, there has not been much study about the impact of burst loss on the performance of TCP over OBS networks. To improve TCP throughput over OBS networks, we first introduce a dropping policy with burst retransmission that retransmits the bursts dropped due to contention, at the ingress node. Then, we extend the dropping policy with burst retransmission to drop a burst that has experienced fewer retransmissions in the event of contention at a core node in order to reduce the number of events that a TCP source enters the slow start phase due to contention. In addition, we propose to limit the number of retransmissions of each burst to prevent severe congestion. For the performance evaluation of the proposed schemes, we provide an analytic throughput model of TCP over OBS networks. Through simulations as well as analytic modeling, it is shown that the proposed dropping policy with burst retransmission can improve TCP throughput over OBS networks compared with an existing dropping policy without burst retransmission.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Feb 13, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off