Droplet streams for serial crystallography of proteins

Droplet streams for serial crystallography of proteins Serial diffraction of proteins requires an injection method to deliver analyte molecules—preferably uncharged, fully hydrated, spatially oriented, and with high flux—into a focused probe beam of electrons or X-rays that is only a few tens of microns in diameter. This work examines conventional Rayleigh sources and electrospray-assisted Rayleigh sources as to their suitability for this task. A comparison is made and conclusions drawn on the basis of time-resolved optical images of the droplet streams produced by these sources. Straight-line periodic streams of monodisperse droplets were generated with both sources, achieving droplet diameters of 4 and 1 micrometer, respectively, for the conventional and electrospray-assisted versions. Shrinkage of droplets by evaporation is discussed and quantified. It is shown experimentally that proteins pass undamaged through a conventional Rayleigh droplet source. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Droplet streams for serial crystallography of proteins

Loading next page...
 
/lp/springer_journal/droplet-streams-for-serial-crystallography-of-proteins-Up1V0l0D33
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0426-8
Publisher site
See Article on Publisher Site

Abstract

Serial diffraction of proteins requires an injection method to deliver analyte molecules—preferably uncharged, fully hydrated, spatially oriented, and with high flux—into a focused probe beam of electrons or X-rays that is only a few tens of microns in diameter. This work examines conventional Rayleigh sources and electrospray-assisted Rayleigh sources as to their suitability for this task. A comparison is made and conclusions drawn on the basis of time-resolved optical images of the droplet streams produced by these sources. Straight-line periodic streams of monodisperse droplets were generated with both sources, achieving droplet diameters of 4 and 1 micrometer, respectively, for the conventional and electrospray-assisted versions. Shrinkage of droplets by evaporation is discussed and quantified. It is shown experimentally that proteins pass undamaged through a conventional Rayleigh droplet source.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 28, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off