Droplet collision mixing diagnostics using single fluorophore LIF

Droplet collision mixing diagnostics using single fluorophore LIF A novel droplet mixing measurement technique is presented that employs single fluorophore laser-induced fluorescence, custom image processing, and statistical analysis for monitoring and quantifying mixing in confined, high-speed droplet collisions. The diagnostic procedure captures time-varying fluorescent signals following binary droplet collisions and reconstructs the spatial concentration field by relating fluorophore intensity to relative concentration. Mixing information is revealed through two governing statistics that separate the roles of convective rearrangement and molecular diffusion during the mixing process. The end result is a viewing window into the rich dynamics of droplet collisions and a diagnostic tool that differentiates between poor and effective mixing. The technique has proved invaluable in the laboratory by allowing direct comparison of different hydrodynamic conditions, such as collision Reynolds and Peclet number, and collision geometries, such as T and Y-junctions. Experiments indicate improved mixing rates and degree of homogenization as the convective timescale for the collision is decreased. Visualization of mixing residuals using pseudo color mapping also identifies areas that are largely segregated from the mixing process, resulting in islands where mixing is poor and stirring has proved ineffective. As the collision velocity is increased, vortical flow fields become apparent and mixing is greatly improved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Droplet collision mixing diagnostics using single fluorophore LIF

Loading next page...
 
/lp/springer_journal/droplet-collision-mixing-diagnostics-using-single-fluorophore-lif-ilK0lR8NMX
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1361-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial