Driving Factors Behind Litter Decomposition and Nutrient Release at Temperate Forest Edges

Driving Factors Behind Litter Decomposition and Nutrient Release at Temperate Forest Edges Forest edges have become important features in landscapes worldwide. Edges are exposed to a different microclimate and higher atmospheric nitrogen (N) deposition compared to forest interiors. It is, however, unclear how microclimate and elevated N deposition affect nutrient cycling at forest edges. We studied litter decomposition and release of N, phosphorus (P), total cations (TC) and C/N ratios during 18 months via the litterbag technique along edge-to-interior transects in two oak (Quercus robur L.) and two pine (Pinus nigra ssp. laricio Maire and ssp. nigra Arnold) stands in Belgium. Furthermore, the roles of edge conditions (microclimate, atmospheric deposition, soil fauna and soil physicochemical conditions), litter quality and edge decomposer community were investigated as underlying driving factors for litter decomposition. Litter of edge and interior was interchanged (focusing on the influence of edge conditions and litter quality) and placed in open-top chamber (OTC), which create an edge (warmer) microclimate. As the decomposer macrofauna was more abundant at the edge than in the interior, the OTCs were used to isolate the effects of warming versus soil fauna. Oak litter at the edge lost 87 and 37% more mass than litter in the interior. We demonstrated an edge effect on litter decomposition and nutrient release, caused by an interplay of edge conditions (atmospheric deposition of N and TC, soil pH and C/N ratio), litter quality and soil fauna. Consequently, edge effects must be accounted for when quantifying ecosystem processes, such as litter decomposition and nutrient cycling in fragmented landscapes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecosystems Springer Journals

Driving Factors Behind Litter Decomposition and Nutrient Release at Temperate Forest Edges

Loading next page...
 
/lp/springer_journal/driving-factors-behind-litter-decomposition-and-nutrient-release-at-cSg0KuzaDn
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Life Sciences; Ecology; Plant Sciences; Zoology; Environmental Management; Geoecology/Natural Processes; Hydrology/Water Resources
ISSN
1432-9840
eISSN
1435-0629
D.O.I.
10.1007/s10021-017-0182-4
Publisher site
See Article on Publisher Site

Abstract

Forest edges have become important features in landscapes worldwide. Edges are exposed to a different microclimate and higher atmospheric nitrogen (N) deposition compared to forest interiors. It is, however, unclear how microclimate and elevated N deposition affect nutrient cycling at forest edges. We studied litter decomposition and release of N, phosphorus (P), total cations (TC) and C/N ratios during 18 months via the litterbag technique along edge-to-interior transects in two oak (Quercus robur L.) and two pine (Pinus nigra ssp. laricio Maire and ssp. nigra Arnold) stands in Belgium. Furthermore, the roles of edge conditions (microclimate, atmospheric deposition, soil fauna and soil physicochemical conditions), litter quality and edge decomposer community were investigated as underlying driving factors for litter decomposition. Litter of edge and interior was interchanged (focusing on the influence of edge conditions and litter quality) and placed in open-top chamber (OTC), which create an edge (warmer) microclimate. As the decomposer macrofauna was more abundant at the edge than in the interior, the OTCs were used to isolate the effects of warming versus soil fauna. Oak litter at the edge lost 87 and 37% more mass than litter in the interior. We demonstrated an edge effect on litter decomposition and nutrient release, caused by an interplay of edge conditions (atmospheric deposition of N and TC, soil pH and C/N ratio), litter quality and soil fauna. Consequently, edge effects must be accounted for when quantifying ecosystem processes, such as litter decomposition and nutrient cycling in fragmented landscapes.

Journal

EcosystemsSpringer Journals

Published: Sep 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off