Drag reduction using superhydrophobic sanded Teflon surfaces

Drag reduction using superhydrophobic sanded Teflon surfaces In this paper, a series of experiments are presented which demonstrate drag reduction for the laminar flow of water through microchannels using superhydrophobic surfaces with random surface microstructure. These superhydrophobic surfaces were fabricated with a simple, inexpensive technique of sanding polytetrafluoroethylene (PTFE) with sandpaper having grit sizes between 120- and 600-grit. A microfluidic device was used to measure the pressure drop as a function of the flow rate to determine the drag reduction and slip length of each surface. A maximum pressure drop reduction of 27 % and a maximum apparent slip length of b = 20 μm were obtained for the superhydrophobic surfaces created by sanding PTFE with a 240-grit sandpaper. The pressure drop reduction and slip length were found to increase with increasing mean particle size of the sandpaper up to 240-grit. Beyond that grit size, increasing the pitch of the surface roughness was found to cause the interface to transition from the Cassie–Baxter state to the Wenzel state. This transition was observed both as an increase in the contact angle hysteresis and simultaneously as a reduction in the pressure drop reduction. For these randomly rough surfaces, a correlation between the slip length and the contact angle hysteresis was found. The surfaces with the smallest contact angle hysteresis were found to also have the largest slip length. Finally, a number of sanding protocols were tested by sanding preferentially along the flow direction, across the flow direction and with a random circular pattern. In all cases, sanding in the flow direction was found to produce the largest pressure drop reduction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Drag reduction using superhydrophobic sanded Teflon surfaces

Loading next page...
 
/lp/springer_journal/drag-reduction-using-superhydrophobic-sanded-teflon-surfaces-kqoQQ5HUuY
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1783-8
Publisher site
See Article on Publisher Site

Abstract

In this paper, a series of experiments are presented which demonstrate drag reduction for the laminar flow of water through microchannels using superhydrophobic surfaces with random surface microstructure. These superhydrophobic surfaces were fabricated with a simple, inexpensive technique of sanding polytetrafluoroethylene (PTFE) with sandpaper having grit sizes between 120- and 600-grit. A microfluidic device was used to measure the pressure drop as a function of the flow rate to determine the drag reduction and slip length of each surface. A maximum pressure drop reduction of 27 % and a maximum apparent slip length of b = 20 μm were obtained for the superhydrophobic surfaces created by sanding PTFE with a 240-grit sandpaper. The pressure drop reduction and slip length were found to increase with increasing mean particle size of the sandpaper up to 240-grit. Beyond that grit size, increasing the pitch of the surface roughness was found to cause the interface to transition from the Cassie–Baxter state to the Wenzel state. This transition was observed both as an increase in the contact angle hysteresis and simultaneously as a reduction in the pressure drop reduction. For these randomly rough surfaces, a correlation between the slip length and the contact angle hysteresis was found. The surfaces with the smallest contact angle hysteresis were found to also have the largest slip length. Finally, a number of sanding protocols were tested by sanding preferentially along the flow direction, across the flow direction and with a random circular pattern. In all cases, sanding in the flow direction was found to produce the largest pressure drop reduction.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 27, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off