Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators

Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators The present paper investigates drag reduction on a rectangular bluff body by employing base flaps and controlling flow separation with fluidic oscillators. Wind tunnel experiments are conducted to assess the influence of various parameters. The flap length has to be sufficiently long to shift the wake structures far enough downstream away from the base plate. Any additional increase in flap length does not yield any further benefits. The flap angle has to be large enough to provide a sufficient inward deflection of the outer flow. If the angle is too large, actuation becomes inefficient due to the pressure gradient imposed by the opposite side of the base perimeter. Furthermore, the flaps at high deflection angles provide additional area for low pressure to act in the streamwise direction and therefore negate the positive effects of actuation. The required actuation intensity is best governed by the ratio between jet and freestream velocity for varying oscillator spacing. For a flap angle of 20°, the smallest net drag is obtained at a velocity ratio of 4.5. Furthermore, the optimal velocity ratio for the most efficient drag reduction changes linearly with flap angle. Smaller flap deflections require a smaller velocity ratio for optimal control at different oscillator spacing. A net drag reduction of about 13 % is measured at a flap angle of 20° when the drag is corrected by the momentum input. Even if the measured drag is conservatively corrected by the energy coefficient, a net improvement of 7 % is achieved. For the current setup, the most efficient drag reduction is still obtained at smaller flap angles with a lower momentum input. However, the presented results support the general feasibility of this drag reduction approach with significant room left for optimization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators

Loading next page...
 
/lp/springer_journal/drag-reduction-on-a-rectangular-bluff-body-with-base-flaps-and-fluidic-iRgkxZ8gP0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-2018-3
Publisher site
See Article on Publisher Site

Abstract

The present paper investigates drag reduction on a rectangular bluff body by employing base flaps and controlling flow separation with fluidic oscillators. Wind tunnel experiments are conducted to assess the influence of various parameters. The flap length has to be sufficiently long to shift the wake structures far enough downstream away from the base plate. Any additional increase in flap length does not yield any further benefits. The flap angle has to be large enough to provide a sufficient inward deflection of the outer flow. If the angle is too large, actuation becomes inefficient due to the pressure gradient imposed by the opposite side of the base perimeter. Furthermore, the flaps at high deflection angles provide additional area for low pressure to act in the streamwise direction and therefore negate the positive effects of actuation. The required actuation intensity is best governed by the ratio between jet and freestream velocity for varying oscillator spacing. For a flap angle of 20°, the smallest net drag is obtained at a velocity ratio of 4.5. Furthermore, the optimal velocity ratio for the most efficient drag reduction changes linearly with flap angle. Smaller flap deflections require a smaller velocity ratio for optimal control at different oscillator spacing. A net drag reduction of about 13 % is measured at a flap angle of 20° when the drag is corrected by the momentum input. Even if the measured drag is conservatively corrected by the energy coefficient, a net improvement of 7 % is achieved. For the current setup, the most efficient drag reduction is still obtained at smaller flap angles with a lower momentum input. However, the presented results support the general feasibility of this drag reduction approach with significant room left for optimization.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off