Downregulation of the Na+-D-glucose Cotransporter SGLT1 by Protein RS1 (RSC1A1) is Dependent on Dynamin and Protein Kinase C

Downregulation of the Na+-D-glucose Cotransporter SGLT1 by Protein RS1 (RSC1A1) is Dependent on... We have previously shown that the regulatory protein RS1, cloned from pig, rabbit and human (RSC1A1), is localized intracellularly and inhibits the transcription of the Na+-D-glucose cotransporter SGLT1 in LLC-PK1 cells. We also reported that transport activities of human SGLT1 (hSGLT1) and human organic cation transporter hOCT2 expressed in Xenopus oocytes were decreased upon co-expression of human RS1 (hRS1). The present paper indicates that the glucose transporter GLUT1 and the peptide transporter PEPT1 are not influenced by hRS1. Voltage-clamp experiments in oocytes expressing hSGLT1 demonstrated that hRS1 reduced the maximal substrate-induced currents but did not change substrate activation, membrane potential dependence, Na+ dependence or substrate selectivity of hSGLT1. Co-expression experiments with a dominant-negative dynamin mutant showed that the posttranslational inhibition of hSGLT1 by hRS1 was dependent on the function of dynamin. Finally, we observed that hRS1 changed the short-term effect of protein kinase C (PKC) on hSGLT1. Whereas the PKC activators phorbol-12-myristate-13-acetate (PMA) and sn-1,2-dioctanoyl glycerol (DOG) increased α-methyl glucose (AMG) uptake expressed by hSGLT1 alone as described earlier, PMA and DOG decreased AMG uptake mediated by hSGLT1 when hRS1 was co-expressed. Taken together, these data indicate that hRS1 modulates dynamin-dependent trafficking of intracellular vesicles containing hSGLT1 in Xenopus oocytes, and modulates PKC-dependent short-term regulation of this transporter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Downregulation of the Na+-D-glucose Cotransporter SGLT1 by Protein RS1 (RSC1A1) is Dependent on Dynamin and Protein Kinase C

Loading next page...
 
/lp/springer_journal/downregulation-of-the-na-d-glucose-cotransporter-sglt1-by-protein-rs1-FRxp6mRGHi
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-0626-y
Publisher site
See Article on Publisher Site

Abstract

We have previously shown that the regulatory protein RS1, cloned from pig, rabbit and human (RSC1A1), is localized intracellularly and inhibits the transcription of the Na+-D-glucose cotransporter SGLT1 in LLC-PK1 cells. We also reported that transport activities of human SGLT1 (hSGLT1) and human organic cation transporter hOCT2 expressed in Xenopus oocytes were decreased upon co-expression of human RS1 (hRS1). The present paper indicates that the glucose transporter GLUT1 and the peptide transporter PEPT1 are not influenced by hRS1. Voltage-clamp experiments in oocytes expressing hSGLT1 demonstrated that hRS1 reduced the maximal substrate-induced currents but did not change substrate activation, membrane potential dependence, Na+ dependence or substrate selectivity of hSGLT1. Co-expression experiments with a dominant-negative dynamin mutant showed that the posttranslational inhibition of hSGLT1 by hRS1 was dependent on the function of dynamin. Finally, we observed that hRS1 changed the short-term effect of protein kinase C (PKC) on hSGLT1. Whereas the PKC activators phorbol-12-myristate-13-acetate (PMA) and sn-1,2-dioctanoyl glycerol (DOG) increased α-methyl glucose (AMG) uptake expressed by hSGLT1 alone as described earlier, PMA and DOG decreased AMG uptake mediated by hSGLT1 when hRS1 was co-expressed. Taken together, these data indicate that hRS1 modulates dynamin-dependent trafficking of intracellular vesicles containing hSGLT1 in Xenopus oocytes, and modulates PKC-dependent short-term regulation of this transporter.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off