Downregulation of the Na+-D-glucose Cotransporter SGLT1 by Protein RS1 (RSC1A1) is Dependent on Dynamin and Protein Kinase C

Downregulation of the Na+-D-glucose Cotransporter SGLT1 by Protein RS1 (RSC1A1) is Dependent on... We have previously shown that the regulatory protein RS1, cloned from pig, rabbit and human (RSC1A1), is localized intracellularly and inhibits the transcription of the Na+-D-glucose cotransporter SGLT1 in LLC-PK1 cells. We also reported that transport activities of human SGLT1 (hSGLT1) and human organic cation transporter hOCT2 expressed in Xenopus oocytes were decreased upon co-expression of human RS1 (hRS1). The present paper indicates that the glucose transporter GLUT1 and the peptide transporter PEPT1 are not influenced by hRS1. Voltage-clamp experiments in oocytes expressing hSGLT1 demonstrated that hRS1 reduced the maximal substrate-induced currents but did not change substrate activation, membrane potential dependence, Na+ dependence or substrate selectivity of hSGLT1. Co-expression experiments with a dominant-negative dynamin mutant showed that the posttranslational inhibition of hSGLT1 by hRS1 was dependent on the function of dynamin. Finally, we observed that hRS1 changed the short-term effect of protein kinase C (PKC) on hSGLT1. Whereas the PKC activators phorbol-12-myristate-13-acetate (PMA) and sn-1,2-dioctanoyl glycerol (DOG) increased α-methyl glucose (AMG) uptake expressed by hSGLT1 alone as described earlier, PMA and DOG decreased AMG uptake mediated by hSGLT1 when hRS1 was co-expressed. Taken together, these data indicate that hRS1 modulates dynamin-dependent trafficking of intracellular vesicles containing hSGLT1 in Xenopus oocytes, and modulates PKC-dependent short-term regulation of this transporter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Downregulation of the Na+-D-glucose Cotransporter SGLT1 by Protein RS1 (RSC1A1) is Dependent on Dynamin and Protein Kinase C

Loading next page...
 
/lp/springer_journal/downregulation-of-the-na-d-glucose-cotransporter-sglt1-by-protein-rs1-FRxp6mRGHi
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-0626-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial