Down-regulation of Long Noncoding RNA MALAT1 Protects Hippocampal Neurons Against Excessive Autophagy and Apoptosis via the PI3K/Akt Signaling Pathway in Rats with Epilepsy

Down-regulation of Long Noncoding RNA MALAT1 Protects Hippocampal Neurons Against Excessive... Epilepsy is a common chronic brain disorder and is characterized by an enduring predisposition to generate seizures. The hippocampus is especially vulnerable to seizure-induced damage. In this study, we explore the ability of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) to influence the autophagy and apoptosis of hippocampal neurons in epilepsy and the underlying mechanism involving the PI3K/Akt signaling pathway. Seventy-two Sprague-Dawley rats were assigned to normal, sham, Ep, Ep + si-NC, Ep + si-MALAT1, and Ep + si-MALAT1 + LY groups. Fluorescence in situ hybridization kit was employed to determine the MALAT1 in the brain tissues. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to determine the expression of MALAT1, mRNAs, and proteins. The autophagy of hippocampal neurons was evaluated under a transmission electron microscope and their apoptosis was evaluated using TUNEL staining. We found that MALAT1 and c-Met were enriched while microRNA-101 (miR-101) decreased in rats with epilepsy. The demonstration showed that MALAT1 binds to miR-101, thus regulating c-Met. In rats with epilepsy, MALAT1 depletion mediated by anti-MALAT1 siRNA resulted in activation of PI3K/Akt signaling pathway and loss of hippocampal neurons. LY294002, an inhibitor of PI3K/Akt signaling pathway, could reverse the events caused by MALAT1 knockdown. Taken together, these findings indicate that down-regulation of MALAT1 activates the PI3K/Akt signaling pathway to protect hippocampal neurons against autophagy and apoptosis in rats with epilepsy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Neuroscience Springer Journals

Down-regulation of Long Noncoding RNA MALAT1 Protects Hippocampal Neurons Against Excessive Autophagy and Apoptosis via the PI3K/Akt Signaling Pathway in Rats with Epilepsy

Loading next page...
 
/lp/springer_journal/down-regulation-of-long-noncoding-rna-malat1-protects-hippocampal-MujJi7x7b0
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurochemistry; Cell Biology; Proteomics; Neurology
ISSN
0895-8696
eISSN
1559-1166
D.O.I.
10.1007/s12031-018-1093-3
Publisher site
See Article on Publisher Site

Abstract

Epilepsy is a common chronic brain disorder and is characterized by an enduring predisposition to generate seizures. The hippocampus is especially vulnerable to seizure-induced damage. In this study, we explore the ability of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) to influence the autophagy and apoptosis of hippocampal neurons in epilepsy and the underlying mechanism involving the PI3K/Akt signaling pathway. Seventy-two Sprague-Dawley rats were assigned to normal, sham, Ep, Ep + si-NC, Ep + si-MALAT1, and Ep + si-MALAT1 + LY groups. Fluorescence in situ hybridization kit was employed to determine the MALAT1 in the brain tissues. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to determine the expression of MALAT1, mRNAs, and proteins. The autophagy of hippocampal neurons was evaluated under a transmission electron microscope and their apoptosis was evaluated using TUNEL staining. We found that MALAT1 and c-Met were enriched while microRNA-101 (miR-101) decreased in rats with epilepsy. The demonstration showed that MALAT1 binds to miR-101, thus regulating c-Met. In rats with epilepsy, MALAT1 depletion mediated by anti-MALAT1 siRNA resulted in activation of PI3K/Akt signaling pathway and loss of hippocampal neurons. LY294002, an inhibitor of PI3K/Akt signaling pathway, could reverse the events caused by MALAT1 knockdown. Taken together, these findings indicate that down-regulation of MALAT1 activates the PI3K/Akt signaling pathway to protect hippocampal neurons against autophagy and apoptosis in rats with epilepsy.

Journal

Journal of Molecular NeuroscienceSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off