Domain configuration evolution, dielectric, ferroelectric and piezoelectric properties of 0.32PIN–0.345PMN–0.335PT single crystals

Domain configuration evolution, dielectric, ferroelectric and piezoelectric properties of... Domain configuration evolution with temperature of the unpoled [001]C-oriented 0.32Pb(In1/2Nb1/2)O3–0.345Pb(Mg1/3Nb2/3)O3–0.335PbTiO3 (0.32PIN–0.345PMN–0.335PT) single crystals was studied by the polarized light microscopy (PLM). The optical observation of the domain structures reveals the coexistence of polymorphic ferroelectric phases with mainly ferroelectric monoclinic phase at room temperature and the irreversible domain evolution upon thermal cycling, which induce the high piezoelectric response in such relaxor-based ferroelectric single crystals with the morphotropic phase boundary compositions combined with polarization rotation. The temperature dependent domain evolution and dielectric behavior demonstrate the successive temperature-induced second-order ferroelectric M phase to ferroelectric tetragonal (T) phase (FEM–FET) and first-order ferroelectric T phase to paraelectric cubic (C) phase (FET–PC) ferroelectric phase transitions in the unpoled 0.32PIN–0.345PMN–0.335PT single crystals. Two dielectric loss anomalies were detected around the dielectric anomaly below 100 °C in the poled 0.32PIN–0.345PMN–0.335PT single crystals, indicating that the FEM–FET phase transition can be correlated with two different ferroelectric phase transitions, one is MA–MC, and the other is MC–T phase transition. The FEM–FET phase transition was confirmed further by the energy density measurement. The temperature dependent piezoelectric properties proved that the working temperature of the 0.32PIN–0.345PMN–0.335PT single crystals can reach 130 °C, higher around 50 °C than the Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals, indicating their promising applications in transducers used at elevated temperatures. Journal of Materials Science: Materials in Electronics Springer Journals

Domain configuration evolution, dielectric, ferroelectric and piezoelectric properties of 0.32PIN–0.345PMN–0.335PT single crystals

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial