Does National Wetland Inventory class consistently identify vegetation and edaphic differences in Oregon tidal wetlands?

Does National Wetland Inventory class consistently identify vegetation and edaphic differences in... Accurately mapping, modeling, and managing the diversity of wetlands present in estuaries often relies on habitat classification systems that consistently identify differences in biotic structure or other ecosystem characteristics between classes. We used field data from four Oregon estuaries to test for differences in vegetation structure and edaphic characteristics among three tidal emergent marsh classes derived from National Wetlands Inventory (NWI) data: low estuarine marsh, high estuarine marsh, and tidal palustrine marsh. Independently of NWI class, we also evaluated the number and types of plant assemblages present and how edaphic variables, non-native plant cover, and plant species richness varied among them. Pore water salinity varied most strongly across marsh classes, with sediment carbon and nitrogen content, grain size and marsh surface elevation showing smaller differences. Cover of common vascular plant species differed between marsh classes and overall vegetation composition was somewhat distinct among marsh types. High estuarine marsh had the largest species pools. However, plot-level plant diversity was similar among marsh classes. Non-native species cover was highest in tidal palustrine and high estuarine marshes. The marshes in the study contained a large number of plant assemblages with most occurring across more than one marsh class. The more common assemblages occurred along a continuum of tidal elevation, soil salinity, and edaphic characteristics, with varying plant richness and non-native cover. Our data suggest that NWI classes are useful for differentiating several general features of Oregon tidal marsh structure, but that more detailed information on plant assemblages found within those wetland classes would allow more precise characterization of additional wetland features such as edaphic conditions and plant diversity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wetlands Ecology and Management Springer Journals

Does National Wetland Inventory class consistently identify vegetation and edaphic differences in Oregon tidal wetlands?

Loading next page...
 
/lp/springer_journal/does-national-wetland-inventory-class-consistently-identify-vegetation-pWq4PvjRA0
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Life Sciences; Freshwater & Marine Ecology; Conservation Biology/Ecology; Environmental Law/Policy/Ecojustice; Marine & Freshwater Sciences; Hydrology/Water Resources; Water Quality/Water Pollution
ISSN
0923-4861
eISSN
1572-9834
D.O.I.
10.1007/s11273-017-9575-6
Publisher site
See Article on Publisher Site

Abstract

Accurately mapping, modeling, and managing the diversity of wetlands present in estuaries often relies on habitat classification systems that consistently identify differences in biotic structure or other ecosystem characteristics between classes. We used field data from four Oregon estuaries to test for differences in vegetation structure and edaphic characteristics among three tidal emergent marsh classes derived from National Wetlands Inventory (NWI) data: low estuarine marsh, high estuarine marsh, and tidal palustrine marsh. Independently of NWI class, we also evaluated the number and types of plant assemblages present and how edaphic variables, non-native plant cover, and plant species richness varied among them. Pore water salinity varied most strongly across marsh classes, with sediment carbon and nitrogen content, grain size and marsh surface elevation showing smaller differences. Cover of common vascular plant species differed between marsh classes and overall vegetation composition was somewhat distinct among marsh types. High estuarine marsh had the largest species pools. However, plot-level plant diversity was similar among marsh classes. Non-native species cover was highest in tidal palustrine and high estuarine marshes. The marshes in the study contained a large number of plant assemblages with most occurring across more than one marsh class. The more common assemblages occurred along a continuum of tidal elevation, soil salinity, and edaphic characteristics, with varying plant richness and non-native cover. Our data suggest that NWI classes are useful for differentiating several general features of Oregon tidal marsh structure, but that more detailed information on plant assemblages found within those wetland classes would allow more precise characterization of additional wetland features such as edaphic conditions and plant diversity.

Journal

Wetlands Ecology and ManagementSpringer Journals

Published: Sep 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off