Do Polyamines Participate in the Long-Distance Translocation of Stress Signals in Plants?

Do Polyamines Participate in the Long-Distance Translocation of Stress Signals in Plants? Accumulation and ethylene-dependent translocation of free polyamines was studied in various organs, the phloem and xylem exudates of common ice plants (Mesembryanthemum crystallinum L.). Under normal conditions (23–25°C), spermidine predominated among polyamines. Cadaverine was found in old leaves, stems, and, in large quantities, in roots. The heat shock treatment (HS; 47°C, 2 h) of intact plant shoots induced intense evolution of ethylene from leaves but reduced the leaf content of polyamines. Under these conditions, the concentration of polyamines in roots, particularly of cadaverine, increased many times. The HS treatment of roots (40°C, 2 h) induced translocation of cadaverine to stems and putrescine to leaves. An enhanced polyamine content after HS treatment was also found in the xylem and phloem exudates. The exposure of detached leaves to ethylene led to a reduction in their putrescine and spermidine and accumulation of cadaverine, which implies the ethylene-dependent formation of cadaverine and a possible relation between the HS-induced translocation of this diamine to roots and the transient ethylene evolution by leaves. To validate this hypothesis, we compared the ethylene evolution rate and interorgan partitioning of cadaverine and other polyamines for two lines of Arabidopsis thaliana: the wild type (Col-0) and ein4 mutant with impaired ethylene reception. In plants grown in light at 20–21°C, the rate of ethylene evolution by rosetted leaves was higher in the mutant than in the wild type. The content of putrescine and spermidine was reduced in mutant leaves, whereas cadaverine concentration increased almost threefold compared with the wild type. In roots, cadaverine was found only in the wild type and not in the mutant line. Our data indicate the ethylene-dependent formation of cadaverine in leaves and possible involvement of cadaverine and ethylene in the long-distance translocation of stress (HS) signal in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Do Polyamines Participate in the Long-Distance Translocation of Stress Signals in Plants?

Loading next page...
 
/lp/springer_journal/do-polyamines-participate-in-the-long-distance-translocation-of-stress-AO1N5lSkSS
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1013776631284
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial