DNS of Taylor–Couette flow between counter-rotating cylinders at small radius ratio

DNS of Taylor–Couette flow between counter-rotating cylinders at small radius ratio A counter-rotating Taylor–Couette flow with relatively small radius ratios of $$\eta = 0.2$$ η = 0.2 –0.5 was investigated over a wide range of the Reynolds number, from laminar to turbulent regime, by means of three-dimensional direct numerical simulations. We investigated the $$\eta $$ η dependence of the flow structure and determined a critical value between $$\eta =0.2$$ η = 0.2 and 0.3, below which, the stable outer cylinder side exhibited a modal structure that was different from the Taylor-vortex flow on the inner side. At $$\eta \ge 0.3$$ η ≥ 0.3 , the Taylor-vortex on the unstable inner side dominated the entire flow field between the cylinders, whose footprints were observed in the vicinity of the outer cylinder wall. However, for $$\eta =0.2$$ η = 0.2 , the influence from the inner side was limited up to the centre of the cylinder gap. Moreover, on the stable outer cylinder side, there appeared a modal structure that was axially homogeneous, azimuthally periodic, and similar to the Tollmien–Schlichting instability wave. As the Reynolds number increased with a fixed $$\eta =0.2$$ η = 0.2 , the modal structure changed its azimuthal wavenumber and thickened radially in the wall unit. Although the Reynolds shear stress on the outer side remained approximately zero, the intensity of the velocity fluctuations was comparable to the Taylor-vortex flows in the central part. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Advances in Engineering Sciences and Applied Mathematics Springer Journals

DNS of Taylor–Couette flow between counter-rotating cylinders at small radius ratio

Loading next page...
 
/lp/springer_journal/dns-of-taylor-couette-flow-between-counter-rotating-cylinders-at-small-RgBu8FdgPS
Publisher
Springer India
Copyright
Copyright © 2018 by Indian Institute of Technology Madras
Subject
Engineering; Engineering, general; Mathematical and Computational Engineering
ISSN
0975-0770
eISSN
0975-5616
D.O.I.
10.1007/s12572-018-0217-x
Publisher site
See Article on Publisher Site

Abstract

A counter-rotating Taylor–Couette flow with relatively small radius ratios of $$\eta = 0.2$$ η = 0.2 –0.5 was investigated over a wide range of the Reynolds number, from laminar to turbulent regime, by means of three-dimensional direct numerical simulations. We investigated the $$\eta $$ η dependence of the flow structure and determined a critical value between $$\eta =0.2$$ η = 0.2 and 0.3, below which, the stable outer cylinder side exhibited a modal structure that was different from the Taylor-vortex flow on the inner side. At $$\eta \ge 0.3$$ η ≥ 0.3 , the Taylor-vortex on the unstable inner side dominated the entire flow field between the cylinders, whose footprints were observed in the vicinity of the outer cylinder wall. However, for $$\eta =0.2$$ η = 0.2 , the influence from the inner side was limited up to the centre of the cylinder gap. Moreover, on the stable outer cylinder side, there appeared a modal structure that was axially homogeneous, azimuthally periodic, and similar to the Tollmien–Schlichting instability wave. As the Reynolds number increased with a fixed $$\eta =0.2$$ η = 0.2 , the modal structure changed its azimuthal wavenumber and thickened radially in the wall unit. Although the Reynolds shear stress on the outer side remained approximately zero, the intensity of the velocity fluctuations was comparable to the Taylor-vortex flows in the central part.

Journal

International Journal of Advances in Engineering Sciences and Applied MathematicsSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off