DNM1L Variant Alters Baseline Mitochondrial Function and Response to Stress in a Patient with Severe Neurological Dysfunction

DNM1L Variant Alters Baseline Mitochondrial Function and Response to Stress in a Patient with... Mitochondria play vital roles in brain development and neuronal activity, and mitochondrial dynamics (fission and fusion) maintain organelle function through the removal of damaged components. Dynamin-like protein-1 (DRP-1), encoded by DNM1L, is an evolutionarily conserved GTPase that mediates mitochondrial fission by surrounding the scission site in concentric ring-like structures via self-oligomerization, followed by GTPase-dependant constriction. Here, we describe the clinical characteristics and cellular phenotype of a patient with severe neurological dysfunction, possessing a homozygous DNM1L variant c.305C>T (p.T115M) in the GTPase domain. For comparative analysis, we also describe a previously identified heterozygous variant demonstrating a rapidly fatal neurocognitive phenotype (c.261dup/c.385:386del, p.W88M*9/E129K*6). Using patient-generated fibroblasts, we demonstrated both DNM1L variants undergo adverse alterations to mitochondrial structure and function, including impaired mitochondrial fission, reduced membrane potential, and lower oxidative capacity including an increased cellular level of reactive oxygen species (ROS) and dsDNA breaks. Mutation of DNM1L was also associated with impaired responses to oxidative stress, as treatment with hydrogen peroxide dramatically increased cellular ROS, with minimal exacerbation of already impaired mitochondrial function. Taken together, our observations indicate that homozygous p.T115M variant of DNM1L produces a neurological and neurodevelopmental phenotype, consistent with impaired mitochondrial architecture and function, through a diminished ability to oligomerize, which was most prevalent under oxidative stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical Genetics Springer Journals

DNM1L Variant Alters Baseline Mitochondrial Function and Response to Stress in a Patient with Severe Neurological Dysfunction

Loading next page...
 
/lp/springer_journal/dnm1l-variant-alters-baseline-mitochondrial-function-and-response-to-gJJxfe79NM
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Biomedicine; Human Genetics; Biochemistry, general; Zoology; Medical Microbiology
ISSN
0006-2928
eISSN
1573-4927
D.O.I.
10.1007/s10528-017-9829-2
Publisher site
See Article on Publisher Site

Abstract

Mitochondria play vital roles in brain development and neuronal activity, and mitochondrial dynamics (fission and fusion) maintain organelle function through the removal of damaged components. Dynamin-like protein-1 (DRP-1), encoded by DNM1L, is an evolutionarily conserved GTPase that mediates mitochondrial fission by surrounding the scission site in concentric ring-like structures via self-oligomerization, followed by GTPase-dependant constriction. Here, we describe the clinical characteristics and cellular phenotype of a patient with severe neurological dysfunction, possessing a homozygous DNM1L variant c.305C>T (p.T115M) in the GTPase domain. For comparative analysis, we also describe a previously identified heterozygous variant demonstrating a rapidly fatal neurocognitive phenotype (c.261dup/c.385:386del, p.W88M*9/E129K*6). Using patient-generated fibroblasts, we demonstrated both DNM1L variants undergo adverse alterations to mitochondrial structure and function, including impaired mitochondrial fission, reduced membrane potential, and lower oxidative capacity including an increased cellular level of reactive oxygen species (ROS) and dsDNA breaks. Mutation of DNM1L was also associated with impaired responses to oxidative stress, as treatment with hydrogen peroxide dramatically increased cellular ROS, with minimal exacerbation of already impaired mitochondrial function. Taken together, our observations indicate that homozygous p.T115M variant of DNM1L produces a neurological and neurodevelopmental phenotype, consistent with impaired mitochondrial architecture and function, through a diminished ability to oligomerize, which was most prevalent under oxidative stress.

Journal

Biochemical GeneticsSpringer Journals

Published: Nov 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off