DNA barcoding of aquatic insects reveals unforeseen diversity and recurrent population divergence patterns through broad-scale sampling in northern Canada

DNA barcoding of aquatic insects reveals unforeseen diversity and recurrent population divergence... Arctic and subarctic environments are among the most inaccessible regions in the world, making biological surveys difficult to conduct. Thus, the insect fauna of these regions has remained inadequately surveyed. The aquatic insect orders Ephemeroptera, Plecoptera, and Trichoptera (EPTs) are particularly abundant and diverse at high latitudes, playing key roles in trophic chains where nutrients are scarce. However, particular aspects of their life cycle make them difficult to study. Specifically, species-level identification requires last-instar larvae or adults which, because they are short lived, are typically not available for all taxa during a particular collecting event. With the initial goal of surveying the biodiversity of these insect groups, we sampled ca.10,000 EPT specimens from 12 locations across northern Canada over two years. Approximately 800 of these were subsequently selected for COI DNA barcoding. Overall, we identified 155 EPT species (58 Ephemeroptera, 41 Plecoptera, 56 Trichoptera) based on a 2% divergence criterion. Compared to other similar studies on EPTs we found higher (particularly among the Plecoptera and Ephemeroptera) and more even diversity, potentially reflecting environmental differences in sampling localities. We further assessed phylogeographic divergence patterns among seven species, finding that eastern and western populations diverged during the Pleistocene Epoch (<2.5 Ma), with overlapping time frames. This finding highlights the role of potential glacial refugia and subsequent recolonization, as well as the dispersal potential of some EPT species. This study exemplifies how large-scale DNA-based surveys can be combined with phylogeographic inference to better understand the biodiversity and natural history of northern aquatic insect communities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polar Biology Springer Journals

DNA barcoding of aquatic insects reveals unforeseen diversity and recurrent population divergence patterns through broad-scale sampling in northern Canada

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Life Sciences; Ecology; Oceanography; Microbiology; Plant Sciences; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial