Diversity of the alkB Genes of n-Alkane Biodegradation in Thermophilic Hydrocarbon-Oxidizing Bacteria of the Genera Geobacillus, Parageobacillus, and Aeribacillus

Diversity of the alkB Genes of n-Alkane Biodegradation in Thermophilic Hydrocarbon-Oxidizing... Analysis of complete genomes of thermophilic bacteria of the genus Geobacillus, oxidizing n-alkanes and crude oil revealed the ladA gene and its homologues. In the genomes of some strains, the ladA gene was not detected, although they were capable of growth on n-alkanes. Cloning with degenerate primers has previously revealed eight homologues of the alkB gene (alkB-geo1–alkB-geo8) encoding alkane hydroxylases in Geobacillus. In the present work, investigation of the alkB genes of several new strains of thermophilic, hydrocarbon-oxidizing bacilli was carried out. In the clone libraries obtained using degenerate primers for the alkB genes from five strains of the genera Geobacillus, Parageobacillus, and Aeribacillus, mostly the universal homologous genes alkB-geo1 and alkB-geo4 were revealed. Additional PCR amplification with specific primers for each of the eight known alkB homologues revealed the universal homologous genes only in some of the studied strains. A correlation was found between the set of the alkB-geo3–alkB-geo6 homologus genes from Geobacillus subterraneus strain K amplified with specific primers and the previously revealed a set of these homologous genes transcripted at different cultivation conditions. This correlation may be due to accumulation of the copies of individual homologues under different cultivation conditions, which results in higher sensitivity of specific primers. The least common homologue, alkB-geo7, which was not detected in the relevant clone libraries, was found in two strains, indicating the possibility of development of more specific primers for amplification of this homologue in order to reveal hydrocarbon-oxidizing bacteria of related genera Geobacillus–Parageobacillus in molecular ecological research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microbiology Springer Journals

Diversity of the alkB Genes of n-Alkane Biodegradation in Thermophilic Hydrocarbon-Oxidizing Bacteria of the Genera Geobacillus, Parageobacillus, and Aeribacillus

Loading next page...
 
/lp/springer_journal/diversity-of-the-alkb-genes-of-n-alkane-biodegradation-in-thermophilic-XOFQU2I0BS
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Microbiology; Medical Microbiology
ISSN
0026-2617
eISSN
1608-3237
D.O.I.
10.1134/S002626171803013X
Publisher site
See Article on Publisher Site

Abstract

Analysis of complete genomes of thermophilic bacteria of the genus Geobacillus, oxidizing n-alkanes and crude oil revealed the ladA gene and its homologues. In the genomes of some strains, the ladA gene was not detected, although they were capable of growth on n-alkanes. Cloning with degenerate primers has previously revealed eight homologues of the alkB gene (alkB-geo1–alkB-geo8) encoding alkane hydroxylases in Geobacillus. In the present work, investigation of the alkB genes of several new strains of thermophilic, hydrocarbon-oxidizing bacilli was carried out. In the clone libraries obtained using degenerate primers for the alkB genes from five strains of the genera Geobacillus, Parageobacillus, and Aeribacillus, mostly the universal homologous genes alkB-geo1 and alkB-geo4 were revealed. Additional PCR amplification with specific primers for each of the eight known alkB homologues revealed the universal homologous genes only in some of the studied strains. A correlation was found between the set of the alkB-geo3–alkB-geo6 homologus genes from Geobacillus subterraneus strain K amplified with specific primers and the previously revealed a set of these homologous genes transcripted at different cultivation conditions. This correlation may be due to accumulation of the copies of individual homologues under different cultivation conditions, which results in higher sensitivity of specific primers. The least common homologue, alkB-geo7, which was not detected in the relevant clone libraries, was found in two strains, indicating the possibility of development of more specific primers for amplification of this homologue in order to reveal hydrocarbon-oxidizing bacteria of related genera Geobacillus–Parageobacillus in molecular ecological research.

Journal

MicrobiologySpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off