Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles

Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on... Rice has developed several morphological and physiological strategies to adapt to phosphate starvation in the soil. In order to elucidate the molecular basis of response to phosphate starvation, we performed mRNA sequencing of 4 rice cultivars with variation in growth response to Pi starvation as indicated by the shoot/root dry weight ratio. Approximately 254 million sequence reads were mapped onto the IRGSP-1.0 reference rice genome sequence and an average of about 5,000 transcripts from each cultivar were found to be responsive under phosphate starvation. Comparative analysis of the RNA-Seq profiles of the 4 cultivars revealed similarities as well as distinct differences in expression of these responsive transcripts. We elucidated a set of core responsive transcripts including annotated and unannotated transcripts commonly expressed in the 4 cultivars but with different levels of expression. De novo assembly of unmapped reads to the Nipponbare genome generated a set of sequence contigs representing potential new transcripts that may be involved in tolerance to phosphate starvation. This study can be used for identification of genes and gene networks associated with environmental stress and the development of novel strategies for improving tolerance to phosphate starvation in rice and other cereal crops. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals
Loading next page...
 
/lp/springer_journal/diversity-in-the-complexity-of-phosphate-starvation-transcriptomes-oSPdww04Ih
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by The Author(s)
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0106-4
Publisher site
See Article on Publisher Site

Abstract

Rice has developed several morphological and physiological strategies to adapt to phosphate starvation in the soil. In order to elucidate the molecular basis of response to phosphate starvation, we performed mRNA sequencing of 4 rice cultivars with variation in growth response to Pi starvation as indicated by the shoot/root dry weight ratio. Approximately 254 million sequence reads were mapped onto the IRGSP-1.0 reference rice genome sequence and an average of about 5,000 transcripts from each cultivar were found to be responsive under phosphate starvation. Comparative analysis of the RNA-Seq profiles of the 4 cultivars revealed similarities as well as distinct differences in expression of these responsive transcripts. We elucidated a set of core responsive transcripts including annotated and unannotated transcripts commonly expressed in the 4 cultivars but with different levels of expression. De novo assembly of unmapped reads to the Nipponbare genome generated a set of sequence contigs representing potential new transcripts that may be involved in tolerance to phosphate starvation. This study can be used for identification of genes and gene networks associated with environmental stress and the development of novel strategies for improving tolerance to phosphate starvation in rice and other cereal crops.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 16, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off