Diversity and the environmental drivers of spatial variation in Bacteria and micro-Eukarya communities from the Hawaiian anchialine ecosystem

Diversity and the environmental drivers of spatial variation in Bacteria and micro-Eukarya... Little is currently known regarding microbial community structure, and the environmental factors influencing it, within the anchialine ecosystem, defined as near-shore, land-locked water bodies with subsurface connections to the ocean and groundwater aquifer. The Hawaiian Archipelago is home to numerous anchialine habitats, with some on the islands of Maui and Hawaii harboring unique, laminated orange cyanobacterial–bacterial crusts that independently assembled in relatively young basalt fields. Here, benthic and water column bacterial and micro-eukaryotic communities from nine anchialine habitats on Oahu, Maui, and Hawaii were surveyed using high-throughput amplicon sequencing of the V6 (Bacteria-specific) and V9 (Eukarya-biased) hypervariable regions of the 16S- and 18S-rDNA genes, respectively. While benthic communities from habitats with cyanobacterial–bacterial crusts were more similar to each other than to ones lacking it on the same island, each habitat had distinct benthic and water column microbial communities. Analyses of the survey data in the context of environmental factors identified salinity, site, aquifer, and watershed as having the highest explanatory power for the observed variation in microbial diversity and community structure, with lesser drivers being annual rainfall, longitude, ammonium, and dissolved organic carbon. Our results epitomize the abiotic and biotic uniqueness characteristic of individual habitats comprising the Hawaiian anchialine ecosystem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hydrobiologia Springer Journals

Diversity and the environmental drivers of spatial variation in Bacteria and micro-Eukarya communities from the Hawaiian anchialine ecosystem

Loading next page...
 
/lp/springer_journal/diversity-and-the-environmental-drivers-of-spatial-variation-in-gcCdDN1dz0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Life Sciences; Freshwater & Marine Ecology; Ecology; Zoology
ISSN
0018-8158
eISSN
1573-5117
D.O.I.
10.1007/s10750-017-3365-2
Publisher site
See Article on Publisher Site

Abstract

Little is currently known regarding microbial community structure, and the environmental factors influencing it, within the anchialine ecosystem, defined as near-shore, land-locked water bodies with subsurface connections to the ocean and groundwater aquifer. The Hawaiian Archipelago is home to numerous anchialine habitats, with some on the islands of Maui and Hawaii harboring unique, laminated orange cyanobacterial–bacterial crusts that independently assembled in relatively young basalt fields. Here, benthic and water column bacterial and micro-eukaryotic communities from nine anchialine habitats on Oahu, Maui, and Hawaii were surveyed using high-throughput amplicon sequencing of the V6 (Bacteria-specific) and V9 (Eukarya-biased) hypervariable regions of the 16S- and 18S-rDNA genes, respectively. While benthic communities from habitats with cyanobacterial–bacterial crusts were more similar to each other than to ones lacking it on the same island, each habitat had distinct benthic and water column microbial communities. Analyses of the survey data in the context of environmental factors identified salinity, site, aquifer, and watershed as having the highest explanatory power for the observed variation in microbial diversity and community structure, with lesser drivers being annual rainfall, longitude, ammonium, and dissolved organic carbon. Our results epitomize the abiotic and biotic uniqueness characteristic of individual habitats comprising the Hawaiian anchialine ecosystem.

Journal

HydrobiologiaSpringer Journals

Published: Aug 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off