Diverse and proportional size-l object summaries using pairwise relevance

Diverse and proportional size-l object summaries using pairwise relevance The abundance and ubiquity of graphs (e.g., online social networks such as Google $$+$$ + and Facebook; bibliographic graphs such as DBLP) necessitates the effective and efficient search over them. Given a set of keywords that can identify a data subject (DS), a recently proposed keyword search paradigm produces a set of object summaries (OSs) as results. An OS is a tree structure rooted at the DS node (i.e., a node containing the keywords) with surrounding nodes that summarize all data held on the graph about the DS. OS snippets, denoted as size-l OSs, have also been investigated. A size-l OS is a partial OS containing l nodes such that the summation of their importance scores results in the maximum possible total score. However, the set of nodes that maximize the total importance score may result in an uninformative size-l OSs, as very important nodes may be repeated in it, dominating other representative information. In view of this limitation, in this paper, we investigate the effective and efficient generation of two novel types of OS snippets, i.e., diverse and proportional size-l OSs, denoted as DSize-l and PSize-l OSs. Namely, besides the importance of each node, we also consider its pairwise relevance (similarity) to the other nodes in the OS and the snippet. We conduct an extensive evaluation on two real graphs (DBLP and Google $$+$$ + ). We verify effectiveness by collecting user feedback, e.g., by asking DBLP authors (i.e., the DSs themselves) to evaluate our results. In addition, we verify the efficiency of our algorithms and evaluate the quality of the snippets that they produce. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Diverse and proportional size-l object summaries using pairwise relevance

Loading next page...
 
/lp/springer_journal/diverse-and-proportional-size-l-object-summaries-using-pairwise-9lZBGOokBU
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-016-0433-6
Publisher site
See Article on Publisher Site

Abstract

The abundance and ubiquity of graphs (e.g., online social networks such as Google $$+$$ + and Facebook; bibliographic graphs such as DBLP) necessitates the effective and efficient search over them. Given a set of keywords that can identify a data subject (DS), a recently proposed keyword search paradigm produces a set of object summaries (OSs) as results. An OS is a tree structure rooted at the DS node (i.e., a node containing the keywords) with surrounding nodes that summarize all data held on the graph about the DS. OS snippets, denoted as size-l OSs, have also been investigated. A size-l OS is a partial OS containing l nodes such that the summation of their importance scores results in the maximum possible total score. However, the set of nodes that maximize the total importance score may result in an uninformative size-l OSs, as very important nodes may be repeated in it, dominating other representative information. In view of this limitation, in this paper, we investigate the effective and efficient generation of two novel types of OS snippets, i.e., diverse and proportional size-l OSs, denoted as DSize-l and PSize-l OSs. Namely, besides the importance of each node, we also consider its pairwise relevance (similarity) to the other nodes in the OS and the snippet. We conduct an extensive evaluation on two real graphs (DBLP and Google $$+$$ + ). We verify effectiveness by collecting user feedback, e.g., by asking DBLP authors (i.e., the DSs themselves) to evaluate our results. In addition, we verify the efficiency of our algorithms and evaluate the quality of the snippets that they produce.

Journal

The VLDB JournalSpringer Journals

Published: Jul 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off