Diverse and proportional size-l object summaries using pairwise relevance

Diverse and proportional size-l object summaries using pairwise relevance The abundance and ubiquity of graphs (e.g., online social networks such as Google $$+$$ + and Facebook; bibliographic graphs such as DBLP) necessitates the effective and efficient search over them. Given a set of keywords that can identify a data subject (DS), a recently proposed keyword search paradigm produces a set of object summaries (OSs) as results. An OS is a tree structure rooted at the DS node (i.e., a node containing the keywords) with surrounding nodes that summarize all data held on the graph about the DS. OS snippets, denoted as size-l OSs, have also been investigated. A size-l OS is a partial OS containing l nodes such that the summation of their importance scores results in the maximum possible total score. However, the set of nodes that maximize the total importance score may result in an uninformative size-l OSs, as very important nodes may be repeated in it, dominating other representative information. In view of this limitation, in this paper, we investigate the effective and efficient generation of two novel types of OS snippets, i.e., diverse and proportional size-l OSs, denoted as DSize-l and PSize-l OSs. Namely, besides the importance of each node, we also consider its pairwise relevance (similarity) to the other nodes in the OS and the snippet. We conduct an extensive evaluation on two real graphs (DBLP and Google $$+$$ + ). We verify effectiveness by collecting user feedback, e.g., by asking DBLP authors (i.e., the DSs themselves) to evaluate our results. In addition, we verify the efficiency of our algorithms and evaluate the quality of the snippets that they produce. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Diverse and proportional size-l object summaries using pairwise relevance

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial