Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure

Divergence of the polytene chromosome banding sequences as a reflection of evolutionary... Banding sequences of five chromosomal arms (A, C, D, E, and F), accounting for about 70% of the total genome size in 63 Chironomus species, were used as markers to analyze divergence patterns of the linear genome structure during the evolution. The number of chromosomal breakpoints between the pairs of banding sequences compared served as a measure of divergence. It was demonstrated that the greater the divergence between the species compared, the higher the number of chromosomal breakpoints and the smaller the size of the conserved chromosomal segments. A banding sequences comparison in sibling species demonstrated a lower number of chromosomal breakpoints; the breakpoint number was maximum in a comparison of the banding sequences in the subgenera Chironomus and Camptochironomus. The use of the number of chromosomal breakpoints as a genome divergence measure provided establishment of phylogenetic relationships between 63 Chironomus species and discrimination of sibling species groups and cytocomplexes on a phylogenetic tree. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure

Loading next page...
 
/lp/springer_journal/divergence-of-the-polytene-chromosome-banding-sequences-as-a-JUo1uXoIBD
Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1007/s11177-005-0036-6
Publisher site
See Article on Publisher Site

Abstract

Banding sequences of five chromosomal arms (A, C, D, E, and F), accounting for about 70% of the total genome size in 63 Chironomus species, were used as markers to analyze divergence patterns of the linear genome structure during the evolution. The number of chromosomal breakpoints between the pairs of banding sequences compared served as a measure of divergence. It was demonstrated that the greater the divergence between the species compared, the higher the number of chromosomal breakpoints and the smaller the size of the conserved chromosomal segments. A banding sequences comparison in sibling species demonstrated a lower number of chromosomal breakpoints; the breakpoint number was maximum in a comparison of the banding sequences in the subgenera Chironomus and Camptochironomus. The use of the number of chromosomal breakpoints as a genome divergence measure provided establishment of phylogenetic relationships between 63 Chironomus species and discrimination of sibling species groups and cytocomplexes on a phylogenetic tree.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off