Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh)

Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary... A prompt growth in research on arsenic occurrence and behavior in the environment has occurred over the last decade or so. High arsenic (As) in groundwater has become a major global concern due to its widespread occurrence. A comparative hydrogeochemical study was performed on the occurrence of high As groundwater in Datong Basin, China, and Kushtia District, Bangladesh. A total of 132 groundwater samples (83 from Datong Basin and 49 from Kushtia District) were collected to analyze the major hydrogeochemical components and trace elements in groundwater of both areas. Factor analysis (FA) was applied on the hydrochemical data to identify the major hydrogeochemical processes in sedimentary aquifers. High As groundwater was observed in the low-lying central parts of Datong Basin, which are composed of the Holocene alluvial and lacustrine aquifers. The elevated As concentrations ranged from 0.31 to 452 μg/L and distributed in depths between 20 and 45 m. As-enriched groundwater is mainly Na-HCO3 type water and characterized by higher pH value, high Na+, low Ca2+, SO4 2−, and NO3 − along with moderate TDS. The alkaline and reducing subsurface environment facilitate the leaching of As in sedimentary aquifers. The release and distribution of As in aquifers are resulted from the reduction of As-carrying crystalline iron (Fe) oxide/hydroxides and oxidation of organic matter. The aquifers of Kushtia District, Bangladesh, are unconsolidated, alluvial in nature, and developed from Holocene floodplain and Pleistocene deposits. High As (6.04–590.7 μg/L) groundwater occurs mainly in shallow aquifers. The Ca-HCO3 type groundwater is distinguished by circum-neutral pH, medium-high EC, high HCO3 −, and low content of NO3 −, SO4 2−, K+, and Cl−. The reductive suspension of MnOOH increases the dissolved As loads and redox responsive elements such as SO4 2− and pyrite oxidation act as the main mechanisms for As release in groundwater. As is mobilized by anaerobic leakage from the brown-clay and gray-sand into the sediment. Infiltration from irrigation return and surface wash water are the potential factors that remobilize As. The weak loading of Fe suggests that the release of Fe and As is decoupled in sedimentary aquifers of Kushtia District. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh)

Loading next page...
 
/lp/springer_journal/distribution-and-hydrogeochemical-behavior-of-arsenic-enriched-ulH1OSpuUs
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1756-1
Publisher site
See Article on Publisher Site

Abstract

A prompt growth in research on arsenic occurrence and behavior in the environment has occurred over the last decade or so. High arsenic (As) in groundwater has become a major global concern due to its widespread occurrence. A comparative hydrogeochemical study was performed on the occurrence of high As groundwater in Datong Basin, China, and Kushtia District, Bangladesh. A total of 132 groundwater samples (83 from Datong Basin and 49 from Kushtia District) were collected to analyze the major hydrogeochemical components and trace elements in groundwater of both areas. Factor analysis (FA) was applied on the hydrochemical data to identify the major hydrogeochemical processes in sedimentary aquifers. High As groundwater was observed in the low-lying central parts of Datong Basin, which are composed of the Holocene alluvial and lacustrine aquifers. The elevated As concentrations ranged from 0.31 to 452 μg/L and distributed in depths between 20 and 45 m. As-enriched groundwater is mainly Na-HCO3 type water and characterized by higher pH value, high Na+, low Ca2+, SO4 2−, and NO3 − along with moderate TDS. The alkaline and reducing subsurface environment facilitate the leaching of As in sedimentary aquifers. The release and distribution of As in aquifers are resulted from the reduction of As-carrying crystalline iron (Fe) oxide/hydroxides and oxidation of organic matter. The aquifers of Kushtia District, Bangladesh, are unconsolidated, alluvial in nature, and developed from Holocene floodplain and Pleistocene deposits. High As (6.04–590.7 μg/L) groundwater occurs mainly in shallow aquifers. The Ca-HCO3 type groundwater is distinguished by circum-neutral pH, medium-high EC, high HCO3 −, and low content of NO3 −, SO4 2−, K+, and Cl−. The reductive suspension of MnOOH increases the dissolved As loads and redox responsive elements such as SO4 2− and pyrite oxidation act as the main mechanisms for As release in groundwater. As is mobilized by anaerobic leakage from the brown-clay and gray-sand into the sediment. Infiltration from irrigation return and surface wash water are the potential factors that remobilize As. The weak loading of Fe suggests that the release of Fe and As is decoupled in sedimentary aquifers of Kushtia District.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off