Distributed snapshot isolation: global transactions pay globally, local transactions pay locally

Distributed snapshot isolation: global transactions pay globally, local transactions pay locally Modern database systems employ Snapshot Isolation to implement concurrency control and isolationbecause it promises superior query performance compared to lock-based alternatives. Furthermore, Snapshot Isolation never blocks readers, which is an important property for modern information systems, which have mixed workloads of heavy OLAP queries and short update transactions. This paper revisits the problem of implementing Snapshot Isolation in a distributed database system and makes three important contributions. First, a complete definition of Distributed Snapshot Isolation is given, thereby extending existing definitions from the literature. Based on this definition, a set of criteria is proposed to efficiently implement Snapshot Isolation in a distributed system. Second, the design space of alternative methods to implement Distributed Snapshot Isolation is presented based on this set of criteria. Third, a new approach to implement Distributed Snapshot Isolation is devised; we refer to this approach as Incremental . The results of comprehensive performance experiments with the TPC-C benchmark show that the Incremental approach significantly outperforms any other known method from the literature. Furthermore, the Incremental approach requires no a priori knowledge of which nodes of a distributed system are involved in executing a transaction. Also, the Incremental approach can execute transactions that involve data from a single node only with the same efficiency as a centralized database system. This way, the Incremental approach takes advantage of sharding or other ways to improve data locality. The cost for synchronizing transactions in a distributed system is only paid by transactions that actually involve data from several nodes. All these properties make the Incremental approach more practical than related methods proposed in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Distributed snapshot isolation: global transactions pay globally, local transactions pay locally

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial