Distributed shortest path query processing on dynamic road networks

Distributed shortest path query processing on dynamic road networks Shortest path query processing on dynamic road networks is a fundamental component for real-time navigation systems. In the face of an enormous volume of customer demand from Uber and similar apps, it is desirable to study distributed shortest path query processing that can be deployed on elastic and fault-tolerant cloud platforms. In this paper, we combine the merits of distributed streaming computing systems and lightweight indexing to build an efficient shortest path query processing engine on top of Yahoo S4. We propose two types of asynchronous communication algorithms for early termination. One is first-in-first-out message propagation with certain optimizations, and the other is prioritized message propagation with the help of navigational intelligence. Extensive experiments were conducted on large-scale real road networks, and the results show that the query efficiency of our methods can meet the real-time requirement and is superior to Pregel and Pregel+. The source code of our system is publicly available at https://github.com/yangdingyu/cands . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Distributed shortest path query processing on dynamic road networks

Loading next page...
 
/lp/springer_journal/distributed-shortest-path-query-processing-on-dynamic-road-networks-NBin1fN0RZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-017-0457-6
Publisher site
See Article on Publisher Site

Abstract

Shortest path query processing on dynamic road networks is a fundamental component for real-time navigation systems. In the face of an enormous volume of customer demand from Uber and similar apps, it is desirable to study distributed shortest path query processing that can be deployed on elastic and fault-tolerant cloud platforms. In this paper, we combine the merits of distributed streaming computing systems and lightweight indexing to build an efficient shortest path query processing engine on top of Yahoo S4. We propose two types of asynchronous communication algorithms for early termination. One is first-in-first-out message propagation with certain optimizations, and the other is prioritized message propagation with the help of navigational intelligence. Extensive experiments were conducted on large-scale real road networks, and the results show that the query efficiency of our methods can meet the real-time requirement and is superior to Pregel and Pregel+. The source code of our system is publicly available at https://github.com/yangdingyu/cands .

Journal

The VLDB JournalSpringer Journals

Published: Feb 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off