Distributed classification for image spam detection

Distributed classification for image spam detection Spam appears in various forms and the current trend in spamming is moving towards multimedia spam objects. Image spam is a new type of spam attacks which attempts to bypass the spam filters that mostly text-based. Spamming attacks the users in many ways and these are usually countered by having a server to filter the spammers. This paper provides a fully-distributed pattern recognition system within P2P networks using the distributed associative memory tree (DASMET) algorithm to detect spam which is cost-efficient and not prone to a single point of failure, unlike the server-based systems. This algorithm is scalable for large and frequently updated data sets, and specifically designed for data sets that consist of similar occurring patterns.We have evaluated our system against centralised state-of-the-art algorithms (NN, k-NN, naive Bayes, BPNN and RBFN) and distributed P2P-based algorithms (Ivote-DPV, ensemble k-NN, ensemble naive Bayes, and P2P-GN). The experimental results show that our method is highly accurate with a 98 to 99% accuracy rate, and incurs a small number of messages—in the best-case, it requires only two messages per recall test. In summary, our experimental results show that the DAS-MET performs best with a relatively small amount of resources for the spam detection compared to other distributed methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Distributed classification for image spam detection

Loading next page...
 
/lp/springer_journal/distributed-classification-for-image-spam-detection-60H40u8h0L
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4944-y
Publisher site
See Article on Publisher Site

Abstract

Spam appears in various forms and the current trend in spamming is moving towards multimedia spam objects. Image spam is a new type of spam attacks which attempts to bypass the spam filters that mostly text-based. Spamming attacks the users in many ways and these are usually countered by having a server to filter the spammers. This paper provides a fully-distributed pattern recognition system within P2P networks using the distributed associative memory tree (DASMET) algorithm to detect spam which is cost-efficient and not prone to a single point of failure, unlike the server-based systems. This algorithm is scalable for large and frequently updated data sets, and specifically designed for data sets that consist of similar occurring patterns.We have evaluated our system against centralised state-of-the-art algorithms (NN, k-NN, naive Bayes, BPNN and RBFN) and distributed P2P-based algorithms (Ivote-DPV, ensemble k-NN, ensemble naive Bayes, and P2P-GN). The experimental results show that our method is highly accurate with a 98 to 99% accuracy rate, and incurs a small number of messages—in the best-case, it requires only two messages per recall test. In summary, our experimental results show that the DAS-MET performs best with a relatively small amount of resources for the spam detection compared to other distributed methods.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off