Distinguished three-qubit ‘magicity’ via automorphisms of the split Cayley hexagon

Distinguished three-qubit ‘magicity’ via automorphisms of the split Cayley hexagon Disregarding the identity, the remaining 63 elements of the generalized three-qubit Pauli group are found to contain 12096 distinct copies of Mermin’s magic pentagram. Remarkably, 12096 is also the number of automorphisms of the smallest split Cayley hexagon. We give a few solid arguments showing that this may not be a mere coincidence. These arguments are mainly tied to the structure of certain types of geometric hyperplanes of the hexagon. It is further demonstrated that also an $$(18_{2}, 12_{3})$$ -type of magic configurations, recently proposed by Waegell and Aravind (J Phys A Math Theor 45:405301, 2012), seems to be intricately linked with automorphisms of the hexagon. Finally, the entanglement properties exhibited by edges of both pentagrams and these particular Waegell–Aravind configurations are addressed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Distinguished three-qubit ‘magicity’ via automorphisms of the split Cayley hexagon

Loading next page...
 
/lp/springer_journal/distinguished-three-qubit-magicity-via-automorphisms-of-the-split-X0v5FvLWHn
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0547-3
Publisher site
See Article on Publisher Site

Abstract

Disregarding the identity, the remaining 63 elements of the generalized three-qubit Pauli group are found to contain 12096 distinct copies of Mermin’s magic pentagram. Remarkably, 12096 is also the number of automorphisms of the smallest split Cayley hexagon. We give a few solid arguments showing that this may not be a mere coincidence. These arguments are mainly tied to the structure of certain types of geometric hyperplanes of the hexagon. It is further demonstrated that also an $$(18_{2}, 12_{3})$$ -type of magic configurations, recently proposed by Waegell and Aravind (J Phys A Math Theor 45:405301, 2012), seems to be intricately linked with automorphisms of the hexagon. Finally, the entanglement properties exhibited by edges of both pentagrams and these particular Waegell–Aravind configurations are addressed.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 24, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off