Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Canudas, Benjamin Houghtaling, Ju Kim, Jasmin Dynek, William Chang, Susan Smith (2007)
Protein requirements for sister telomere association in human cellsThe EMBO Journal, 26
Vania Parelho, Suzana Hadjur, Mikhail Spivakov, M. Leleu, S. Sauer, H. Gregson, A. Jarmuz, C. Canzonetta, Zoe Webster, T. Nesterova, B. Cobb, K. Yokomori, N. Dillon, L. Aragón, A. Fisher, M. Merkenschlager (2008)
Cohesins Functionally Associate with CTCF on Mammalian Chromosome ArmsCell, 132
Bin Hu, Naomi Petela, Alexander Kurze, Kok-Lung Chan, Christophe Chapard, K. Nasmyth (2015)
Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seqNucleic Acids Research, 43
J. Cox, Nadin Neuhauser, Annette Michalski, R. Scheltema, J. Olsen, M. Mann (2011)
Andromeda: a peptide search engine integrated into the MaxQuant environment.Journal of proteome research, 10 4
Vlad Seitan, Andre Faure, Ye Zhan, R. McCord, B. Lajoie, Elizabeth Ing-Simmons, B. Lenhard, L. Giorgetti, E. Heard, A. Fisher, Paul Flicek, J. Dekker, M. Merkenschlager (2014)
Cohesin-based chromatin interactions enable regulated gene expression within pre-existing architectural compartments
Christian Gocke, Hongtao Yu (2008)
ZNF198 Stabilizes the LSD1–CoREST–HDAC1 Complex on Chromatin through Its MYM-Type Zinc FingersPLoS ONE, 3
M. Corces, V. Corces, V. Corces (2016)
The three-dimensional cancer genome.Current opinion in genetics & development, 36
A. Subramanian, Heidi Kuehn, Joshua Gould, P. Tamayo, J. Mesirov (2007)
GSEA-P: a desktop application for Gene Set Enrichment AnalysisBioinformatics, 23 23
Guoliang Li, Xiaoan Ruan, Raymond Auerbach, K. Sandhu, Meizhen Zheng, Ping Wang, H. Poh, Yufen Goh, Joanne Lim, Jingyao Zhang, Hui Sim, Su Peh, F. Mulawadi, C. Ong, Y. Orlov, Shuzhen Hong, Zhizhuo Zhang, S. Landt, D. Raha, G. Euskirchen, Chia-Lin Wei, W. Ge, Huaien Wang, Carrie Davis, Katherine Fisher-Aylor, A. Mortazavi, M. Gerstein, T. Gingeras, B. Wold, Y. Sun, M. Fullwood, E. Cheung, E. Liu, W. Sung, M. Snyder, Y. Ruan (2012)
Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription RegulationCell, 148
A. Viny, Christopher Ott, B. Spitzer, Martín Rivas, Cem Meydan, Efthymia Papalexi, D. Yelin, K. Shank, Jaime Reyes, A. Chiu, Y. Romin, V. Boyko, Swapna Thota, J. Maciejewski, A. Melnick, J. Bradner, R. Levine (2015)
Dose-dependent role of the cohesin complex in normal and malignant hematopoiesisThe Journal of Experimental Medicine, 212
JR Wisniewski, A Zougman, N Nagaraj, M Mann, JR Wi (2009)
Universal sample preparation method for proteome analysisNat Methods, 6
A. D’Alessio, Z. Fan, Katherine Wert, Petr Baranov, Malkiel Cohen, Janmeet Saini, Evan Cohick, C. Charniga, D. Dadon, N. Hannett, M. Young, S. Temple, R. Jaenisch, Tong Lee, R. Young (2015)
A Systematic Approach to Identify Candidate Transcription Factors that Control Cell IdentityStem Cell Reports, 5
V. Narendra, Pedro Rocha, Disi An, R. Raviram, J. Skok, E. Mazzoni, D. Reinberg (2015)
CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiationScience, 347
A. Kon, L. Shih, Masashi Minamino, M. Sanada, Y. Shiraishi, Y. Nagata, Kenichi Yoshida, Y. Okuno, M. Bando, Ryuichiro Nakato, S. Ishikawa, A. Sato-Otsubo, G. Nagae, Aiko Nishimoto, C. Haferlach, D. Nowak, Yusuke Sato, T. Alpermann, Masao Nagasaki, Teppei Shimamura, Hiroko Tanaka, K. Chiba, R. Yamamoto, Tomoyuki Yamaguchi, M. Otsu, N. Obara, M. Sakata-Yanagimoto, T. Nakamaki, K. Ishiyama, F. Nolte, W. Hofmann, S. Miyawaki, S. Chiba, H. Mori, H. Nakauchi, H. Koeffler, H. Aburatani, T. Haferlach, K. Shirahige, S. Miyano, S. Ogawa (2012)
Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasmsNature Genetics, 45
Preston Countryman, Yanlin Fan, Aparna Gorthi, Hai Pan, Jack Strickland, Parminder Kaur, X. Wang, Jiangguo Lin, Xiaoying Lei, Christian White, C. You, Nicolas Wirth, I. Tessmer, J. Piehler, R. Riehn, A. Bishop, Y. Tao, Hong Wang (2017)
Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediatesThe Journal of Biological Chemistry, 293
Ilya Flyamer, Johanna Gassler, Maxim Imakaev, Hugo Brandão, S. Ulianov, Nezar Abdennur, S. Razin, L. Mirny, Kikuë Tachibana-Konwalski (2017)
Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transitionNature, 544
Natthakan Boongoen, Tossapon Garrett (2004)
BIOINFORMATICS ORIGINAL PAPER
Erez Lieberman-Aiden, Nynke Berkum, Louise Williams, Maxim Imakaev, T. Ragoczy, A. Telling, I. Amit, B. Lajoie, P. Sabo, M. Dorschner, R. Sandstrom, B. Bernstein, M. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. Mirny, E. Lander, J. Dekker (2009)
Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human GenomeScience, 326
A. Tedeschi, G. Wutz, S. Huet, M. Jaritz, Annelie Wuensche, Erika Schirghuber, I. Davidson, W. Tang, D. Cisneros, V. Bhaskara, Tomoko Nishiyama, A. Vaziri, A. Wutz, J. Ellenberg, J. Peters (2013)
Wapl is an essential regulator of chromatin structure and chromosome segregationNature, 501
S. Remeseiro, A. Cuadrado, María Carretero, P. Martínez, W. Drosopoulos, M. Cañamero, C. Schildkraut, M. Blasco, A. Losada (2012)
Cohesin‐SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeresThe EMBO Journal, 31
Chris Berdik (2017)
Bladder cancer: 4 big questionsNature, 551
Suhas Rao, M. Huntley, Neva Durand, Elena Stamenova, Ivan Bochkov, James Robinson, Adrian Sanborn, Ido Machol, Arina Omer, E. Lander, Erez Aiden (2014)
A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin LoopingCell, 159
K. Nasmyth, C. Haering (2009)
Cohesin: its roles and mechanisms.Annual review of genetics, 43
Adrian Sanborn, Suhas Rao, Su-Chen Huang, Neva Durand, M. Huntley, A. Jewett, Ivan Bochkov, D. Chinnappan, Ashok Cutkosky, Jian Li, Kristopher Geeting, A. Gnirke, Alexandre Melnikov, Doug McKenna, Elena Stamenova, E. Lander, Erez Aiden (2015)
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomesProceedings of the National Academy of Sciences, 112
J. Zuin, Jesse Dixon, Michael Reijden, Z. Ye, P. Kolovos, R. Brouwer, M. Corput, H. Werken, T. Knoch, W. Ijcken, F. Grosveld, B. Ren, K. Wendt (2013)
Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cellsProceedings of the National Academy of Sciences, 111
Harmen Werken, G. Landan, Sjoerd Holwerda, Michael Hoichman, P. Klous, Ran Chachik, E. Splinter, Christian Valdes-Quezada, Y. Öz, Britta Bouwman, M. Verstegen, E. Wit, A. Tanay, W. Laat (2012)
Robust 4C-seq data analysis to screen for regulatory DNA interactionsNature Methods, 9
E Ing-Simmons (2015)
Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesinGenome Res, 25
Stefka Tyanova, Tikira Temu, Pavel Sinitcyn, Arthur Carlson, Marco Hein, T. Geiger, M. Mann, J. Cox (2016)
The Perseus computational platform for comprehensive analysis of (prote)omics dataNature Methods, 13
María Carretero, Miguel Ruiz‐Torres, M. Rodríguez-Corsino, I. Barthelemy, A. Losada (2013)
Pds5B is required for cohesion establishment and Aurora B accumulation at centromeresThe EMBO Journal, 32
Jesse Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun Liu, B. Ren (2012)
Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin InteractionsNature, 485
J. Cox, M. Mann (2008)
MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantificationNature Biotechnology, 26
J. Wiśniewski, A. Zougman, Nagarjuna Nagaraj, M. Mann (2009)
Universal sample preparation method for proteome analysisNature Methods, 6
Ben Langmead, S. Salzberg (2012)
Fast gapped-read alignment with Bowtie 2Nature Methods, 9
André Faure, Dominic Schmidt, S. Watt, Petra Schwalie, M. Wilson, Huiling Xu, R. Ramsay, D. Odom, Paul Flicek (2012)
Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modulesGenome Research, 22
IF Davidson (2016)
Rapid movement and transcriptional re-localization of human cohesin on DNAEMBO J, 35
M. Kagey, J. Newman, S. Bilodeau, Y. Zhan, David Orlando, Nynke Berkum, Christopher Ebmeier, J. Goossens, P. Rahl, S. Levine, D. Taatjes, J. Dekker, R. Young (2010)
Mediator and Cohesin Connect Gene Expression and Chromatin ArchitectureNature, 467
J. Méndez, B. Stillman (2000)
Chromatin Association of Human Origin Recognition Complex, Cdc6, and Minichromosome Maintenance Proteins during the Cell Cycle: Assembly of Prereplication Complexes in Late MitosisMolecular and Cellular Biology, 20
B. Bonev, Netta Cohen, Quentin Szabo, L. Fritsch, G. Papadopoulos, Yaniv Lubling, Xiaole Xu, Xiaodan Lv, J. Hugnot, A. Tanay, Giacomo Cavalli (2017)
Multiscale 3D Genome Rewiring during Mouse Neural DevelopmentCell, 171
Wibke Schwarzer, Nezar Abdennur, A. Goloborodko, A. Pękowska, G. Fudenberg, Y. Loe-Mie, Nuno Fonseca, W. Huber, C. Haering, L. Mirny, F. Spitz (2017)
Two independent modes of chromatin organization revealed by cohesin removalNature, 551
T. Bailey, M. Bodén, Fabian Buske, M. Frith, Charles Grant, Luca Clementi, Jingyuan Ren, Wilfred Li, William Noble (2009)
MEME Suite: tools for motif discovery and searchingNucleic Acids Research, 37
M. Koninck, A. Losada (2016)
Cohesin Mutations in Cancer.Cold Spring Harbor perspectives in medicine, 6 12
Jesse Dixon, Inkyung Jung, Siddarth Selvaraj, Yin Shen, Jessica Antosiewicz-Bourget, Ah Lee, Z. Ye, Audrey Kim, N. Rajagopal, Wei Xie, Yarui Diao, Jing Liang, Huimin Zhao, Victor Lobanenkov, J. Ecker, J. Thomson, B. Ren (2015)
Chromatin architecture reorganization during stem cell differentiationNature, 518
Elizabeth Ing-Simmons, Vlad Seitan, André Faure, Paul Flicek, Thomas, Carroll, J. Dekker, A. Fisher, B. Lenhard, M. Merkenschlager (2015)
GENOME/2014/184986-Revised Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin.
Wenbo Li, D. Notani, Qi Ma, Bogdan Tanasa, Esperanza Núñez, A. Chen, Daria Merkurjev, Jie Zhang, K. Ohgi, Xiaoyuan Song, Soohwan Oh, H. Kim, C. Glass, M. Rosenfeld (2013)
Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activationNature, 498
Mohamed-Ali Hakimi, D. Bochar, Josh Chenoweth, William Lane, G. Mandel, R. Shiekhattar (2002)
A core–BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genesProceedings of the National Academy of Sciences of the United States of America, 99
A. Cuadrado, Nadia Corrado, Eusebio Perdiguero, V. Lafarga, P. Muñoz-Cánoves, A. Nebreda (2010)
Essential role of p18Hamlet/SRCAP‐mediated histone H2A.Z chromatin incorporation in muscle differentiationThe EMBO Journal, 29
E. Nora, B. Lajoie, Edda Schulz, L. Giorgetti, I. Okamoto, N. Servant, T. Piolot, N. Berkum, Johannes Meisig, J. Sedat, J. Gribnau, E. Barillot, N. Blüthgen, J. Dekker, E. Heard (2012)
Spatial partitioning of the regulatory landscape of the X-inactivation centreNature, 485
T. Stevens, D. Lando, Srinjan Basu, Liam Atkinson, Y. Cao, Steven Lee, M. Leeb, Kai Wohlfahrt, W. Boucher, Aoife O’Shaughnessy-Kirwan, J. Cramard, André Faure, M. Ralser, E. Blanco, L. Morey, M. Sansó, Matthieu Palayret, Ben Lehner, L. Croce, A. Wutz, B. Hendrich, D. Klenerman, E. Laue (2017)
3D structure of individual mammalian genomes studied by single cell Hi-CNature, 544
Dominic Schmidt, Petra Schwalie, C. Ross-Innes, Antoni Hurtado, Gordon Brown, J. Carroll, Paul Flicek, D. Odom (2010)
A CTCF-independent role for cohesin in tissue-specific transcription.Genome research, 20 5
A. Cuadrado, S. Remeseiro, G. Gómez-López, D. Pisano, A. Losada (2012)
The specific contributions of cohesin-SA1 to cohesion and gene expressionCell Cycle, 11
J. Phillips-Cremins, M. Sauria, Amartya Sanyal, T. Gerasimova, B. Lajoie, J. Bell, Chin-Tong Ong, Tracy Hookway, Changying Guo, Yuhua Sun, M. Bland, W. Wagstaff, S. Dalton, T. McDevitt, R. Sen, J. Dekker, James Taylor, V. Corces (2013)
Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage CommitmentCell, 153
Suzana Hadjur, Luke Williams, N. Ryan, B. Cobb, T. Sexton, P. Fraser, A. Fisher, M. Merkenschlager (2009)
Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locusNature, 460
A. Losada, T. Yokochi, R. Kobayashi, T. Hirano (2000)
Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin ComplexesThe Journal of Cell Biology, 150
Eric Rubio, David Reiss, P. Welcsh, C. Disteche, G. Filippova, N. Baliga, R. Aebersold, J. Ranish, A. Krumm (2008)
CTCF physically links cohesin to chromatinProceedings of the National Academy of Sciences, 105
G. Wutz, C. Várnai, Kota Nagasaka, D. Cisneros, Roman Stocsits, W. Tang, S. Schoenfelder, Gregor Jessberger, M. Muhar, M. Hossain, Nike Walther, B. Koch, M. Kueblbeck, J. Ellenberg, J. Zuber, P. Fraser, J. Peters (2017)
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteinsThe EMBO Journal, 36
J. Ernst, Manolis Kellis (2012)
ChromHMM: automating chromatin-state discovery and characterizationNature Methods, 9
Judith Haarhuis, Robin Weide, V. Blomen, J. Yáñez-Cuna, Mario Amendola, Marjon Ruiten, Peter Krijger, Hans Teunissen, R. Medema, B. Steensel, T. Brummelkamp, Elzo Wit, Benjamin Rowland (2017)
The Cohesin Release Factor WAPL Restricts Chromatin Loop ExtensionCell, 169
Cristina Balbás-Martínez, A. Sagrera, Enrique Carrillo-de-Santa-Pau, J. Earl, M. Márquez, M. Vázquez, E. Lapi, F. Castro-Giner, S. Beltran, M. Bayés, A. Carrato, J. Cigudosa, O. Domínguez, M. Gut, J. Herranz, N. Juanpere, M. Kogevinas, Xavier Langa, E. López-Knowles, J. Lorente, J. Lloreta, D. Pisano, Laia Richart, D. Rico, R. Salgado, A. Tardón, S. Chanock, S. Heath, A. Valencia, A. Losada, I. Gut, N. Malats, F. Real (2013)
Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidyNature genetics, 45
Elzo Wit, Erica Vos, Sjoerd Holwerda, Christian Valdes-Quezada, M. Verstegen, Hans Teunissen, E. Splinter, P. Wijchers, Peter Krijger, W. Laat (2015)
CTCF Binding Polarity Determines Chromatin Looping.Molecular cell, 60 4
Petra Lelij, Simone Lieb, J. Jude, G. Wutz, Catarina Santos, K. Falkenberg, A. Schlattl, J. Ban, Raphaela Schwentner, T. Hoffmann, H. Kovar, F. Real, T. Waldman, M. Pearson, N. Kraut, J. Peters, J. Zuber, M. Petronczki (2017)
Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contextseLife, 6
Heng Li, R. Durbin (2010)
Fast and accurate long-read alignment with Burrows–Wheeler transformBioinformatics, 26
Warren Whyte, David Orlando, Denes Hnisz, B. Abraham, Charles Lin, M. Kagey, P. Rahl, Tong Lee, R. Young (2013)
Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity GenesCell, 153
Wibke Schwarzer, Nezar Abdennur, A. Goloborodko, A. Pękowska, G. Fudenberg, Y. Loe-Mie, Nuno Fonseca, W. Huber, C. Haering, L. Mirny, F. Spitz (2016)
Two independent modes of chromosome organization are revealed by cohesin removalbioRxiv
Wonyul Jang, Tackhoon Kim, J. Koo, Sang-Kyum Kim, D. Lim (2017)
Mechanical cue‐induced YAP instructs Skp2‐dependent cell cycle exit and oncogenic signalingThe EMBO Journal, 36
G. Fudenberg, Maxim Imakaev, Carolyne Lu, A. Goloborodko, Nezar Abdennur, L. Mirny (2015)
Formation of Chromosomal Domains in Interphase by Loop ExtrusionbioRxiv
P. Hauseux, A. Macgregor, F. Portet, C. Mann, A. Ducros (2015)
The authors declare no conflict of interest related to this publication.
N. Ballas, C. Grunseich, Diane Lu, J. Speh, G. Mandel (2005)
REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout NeurogenesisCell, 121
J. Mullenders, Beatriz Aranda-Orgilles, Priscillia Lhoumaud, M. Keller, Juhee Pae, Kun Wang, Clarisse Kayembe, Pedro Rocha, R. Raviram, Yixiao Gong, P. Premsrirut, A. Tsirigos, Richard Bonneau, J. Skok, L. Cimmino, D. Hoehn, I. Aifantis (2015)
Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasmsThe Journal of Experimental Medicine, 212
S. Canudas, Susan Smith (2009)
Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cellsThe Journal of Cell Biology, 187
J. Ernst, P. Kheradpour, T. Mikkelsen, N. Shoresh, L. Ward, C. Epstein, Xiaolan Zhang, Lili Wang, R. Issner, Michael Coyne, Manching Ku, Timothy Durham, Manolis Kellis, B. Bernstein (1966)
SystematicComput. J., 9
Ya Guo, Quan Xu, Daniele Canzio, Jia Shou, Jin-huan Li, David Gorkin, Inkyung Jung, Haiyang Wu, Yanan Zhai, Yuanxiao Tang, Y. Lu, Yonghu Wu, Zhilian Jia, Wei Li, Michael Zhang, B. Ren, A. Krainer, T. Maniatis, Qiang Wu (2015)
CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter FunctionCell, 162
Suhas Rao, Su-Chen Huang, B. Hilaire, J. Engreitz, Elizabeth Perez, Kyong-Rim Kieffer-Kwon, Adrian Sanborn, S. Johnstone, Gavin Bascom, Ivan Bochkov, Xingfan Huang, M. Shamim, Jaeweon Shin, Douglass Turner, Ziyi Ye, Arina Omer, James Robinson, T. Schlick, B. Bernstein, R. Casellas, E. Lander, Erez Aiden (2017)
Cohesin Loss Eliminates All Loop DomainsCell, 171
Fidel Ramírez, D. Ryan, B. Grüning, Vivek Bhardwaj, Fabian Kilpert, Andreas Richter, Steffen Heyne, F. Dündar, T. Manke (2016)
deepTools2: a next generation web server for deep-sequencing data analysisNucleic Acids Research, 44
François Serra, Davide Baù, Mike Goodstadt, David Castillo, Guillaume Filion, M. Martí-Renom (2017)
Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colorsPLoS Computational Biology, 13
K. Wendt, Keisuke Yoshida, T. Itoh, M. Bando, B. Koch, Erika Schirghuber, S. Tsutsumi, G. Nagae, Ko Ishihara, Tsuyoshi Mishiro, Kazuhide Yahata, F. Imamoto, H. Aburatani, M. Nakao, N. Imamoto, K. Maeshima, K. Shirahige, J. Peters (2008)
Cohesin mediates transcriptional insulation by CCCTC-binding factorNature, 451
E. Nora, A. Goloborodko, Anne-Laure Valton, J. Gibcus, Alec Uebersohn, Nezar Abdennur, J. Dekker, L. Mirny, B. Bruneau (2017)
Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic CompartmentalizationCell, 169
Yasuto Murayama, Catarina Samora, Y. Kurokawa, H. Iwasaki, F. Uhlmann (2018)
Establishment of DNA-DNA Interactions by the Cohesin RingCell, 172
S. Remeseiro, A. Cuadrado, G. Gómez-López, D. Pisano, A. Losada (2012)
A unique role of cohesin‐SA1 in gene regulation and developmentThe EMBO Journal, 31
Yong Zhang, Tao Liu, Clifford Meyer, J. Eeckhoute, David Johnson, B. Bernstein, C. Nusbaum, R. Myers, Myles Brown, Wei Li, X. Liu (2008)
Model-based Analysis of ChIP-Seq (MACS)Genome Biology, 9
D. Solomon, Jung‐Sik Kim, J. Bondaruk, S. Shariat, Zengfeng Wang, A. Elkahloun, T. Ozawa, J. Gerard, D. Zhuang, Shizhen Zhang, N. Navai, A. Siefker-Radtke, J. Phillips, Brian Robinson, M. Rubin, B. Volkmer, R. Hautmann, R. Küfer, P. Hogendoorn, G. Netto, D. Theodorescu, C. James, B. Czerniak, M. Miettinen, T. Waldman (2013)
Frequent truncating mutations of STAG2 in bladder cancerNature genetics, 45
J Ernst (2011)
Mapping and analysis of chromatin state dynamics in nine human cell typesNature, 473
François Serra, Davide Baù, Guillaume Filion, M. Martí-Renom (2016)
Structural features of the fly chromatin colors revealed by automatic three-dimensional modelingbioRxiv
Two variant cohesin complexes containing SMC1, SMC3, RAD21 and either SA1 (also known as STAG1) or SA2 (also known as STAG2) are present in all cell types. We report here their genomic distribution and specific contributions to genome organization in human cells. Although both variants are found at CCCTC-binding factor (CTCF) sites, a distinct population of the SA2-containing cohesin complexes (hereafter referred to as cohesin-SA2) localize to enhancers lacking CTCF, are linked to tissue-specific transcription and cannot be replaced by the SA1-containing cohesin complex (cohesin-SA1) when SA2 is absent, a condition that has been observed in several tumors. Downregulation of each of these variants has different consequences for gene expression and genome architecture. Our results suggest that cohesin-SA1 preferentially contributes to the stabilization of topologically associating domain boundaries together with CTCF, whereas cohesin-SA2 promotes cell-type-specific contacts between enhancers and promoters independently of CTCF. Loss of cohesin-SA2 rewires local chromatin contacts and alters gene expression. These findings provide insights into how cohesin mediates chromosome folding and establish a novel framework to address the consequences of mutations in cohesin genes in cancer.
Nature Structural & Molecular Biology – Springer Journals
Published: Jun 4, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.