Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs

Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular... The Glycine max sucrose binding protein (GmSBP2) promoter directs vascular tissue-specific expression of reporter genes in transgenic tobacco. Here we showed that an SBP2-GFP fusion protein under the control of the GmSBP2 promoter accumulates in the vascular tissues of vegetative organs, which is consistent with the proposed involvement of SBP in sucrose transport-dependent physiological processes. Through gain-of-function experiments we confirmed that the tissue-specific determinants of the SBP2 promoter reside in the distal cis-regulatory domain A, CRD-A (position −2000 to −700) that is organized into a modular configuration to suppress promoter activity in tissues other than vascular tissues. The four analyzed CRD-A sub-modules, designates Frag II (−1785/−1508), Frag III (−1507/−1237), Frag IV (−1236/−971) and Frag V (−970/−700), act independently to alter the constitutive pattern of −92pSBP2-mediated GUS expression in different organs. Frag V fused to −92pSBP2-GUS restored the tissue-specific pattern of the full-length promoter in the shoot apex, but not in other organs. Likewise, Frag IV confined GUS expression to the vascular bundle of leaves, whereas Frag II mediated vascular specific expression in roots. Strong stem expression-repressing elements were located at positions −1485 to −1212, as Frag III limited GUS expression to the inner phloem. We have also mapped a procambium silencer to the consensus sequence CAGTTnCaAccACATTcCT which is located in both distal and proximal upstream modules. Fusion of either repressing element-containing module to the constitutive −92pSBP2 promoter suppresses GUS expression in the elongation zone of roots. Together our results demonstrate the unusual aspect of distal sequences negatively controlling tissue-specificity of a plant promoter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs

Loading next page...
 
/lp/springer_journal/distinct-repressing-modules-on-the-distal-region-of-the-sbp2-promoter-Z7WB79V20P
Publisher
Springer Netherlands
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9225-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial