Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells

Distinct heat-shock element arrangements that mediate the heat shock, but not the... Genes coding small heat-shock proteins (sHSPs) show distinct behaviours with respect to environmental and developmental signals. Their transcriptional regulation depends on particular combinations of heat stress cis-elements (heat-shock elements; HSEs) but many aspects regarding their regulation remain unclear. Cyst and root-knot nematodes induce, in the roots of infected plants, the differentiation of special feeding cells with high metabolic activity (syncytia and giant cells, respectively), a process accompanied by extensive gene expression changes. The Hahsp17.7G4 (G4) promoter was active in giant cells and its HSE arrangements were crucial for this activation. In the present work, we provide further basis to associate giant cell expression with the heat-shock response of this gene class, by analysing additional promoters. The Hahsp17.6G1 (G1) promoter, not induced by heat shock, was silent in giant cells, while Hahsp18.6G2 (G2), which responds to heat shock, was specifically induced in giant cells. In addition, a mutated Hahsp17.7G4 promoter version (G4MutP) with a strong heat-shock induction was also induced in giant cells. The responses of the different promoters correlated with distinct HSE configurations, which might have implications on differential trans-activation. Furthermore, the shortest giant cell and heat-shock-inducible sHSP promoter version analysed in tobacco (−83pb Hahsp17.7G4) fully maintained its expression profile in Arabidopsis. Cyst nematodes did not induce the Hahsp17.7G4 promoter, revealing additional specificity in the nematode response. These findings, together with the fact that the class I sHSP products of endogenous genes accumulated specifically in tobacco giant cells, support the idea that these nematode-induced giant cells represent a transcriptional state very similar to that produced by heat shock regarding this class of genes. The high metabolic rate of giant cells may result in unfolded proteins requiring class I sHSPs as chaperones, which might, somehow, mimic heat-shock and/or other stress responses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells

Loading next page...
 
/lp/springer_journal/distinct-heat-shock-element-arrangements-that-mediate-the-heat-shock-BMuAZLkA80
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9259-3
Publisher site
See Article on Publisher Site

Abstract

Genes coding small heat-shock proteins (sHSPs) show distinct behaviours with respect to environmental and developmental signals. Their transcriptional regulation depends on particular combinations of heat stress cis-elements (heat-shock elements; HSEs) but many aspects regarding their regulation remain unclear. Cyst and root-knot nematodes induce, in the roots of infected plants, the differentiation of special feeding cells with high metabolic activity (syncytia and giant cells, respectively), a process accompanied by extensive gene expression changes. The Hahsp17.7G4 (G4) promoter was active in giant cells and its HSE arrangements were crucial for this activation. In the present work, we provide further basis to associate giant cell expression with the heat-shock response of this gene class, by analysing additional promoters. The Hahsp17.6G1 (G1) promoter, not induced by heat shock, was silent in giant cells, while Hahsp18.6G2 (G2), which responds to heat shock, was specifically induced in giant cells. In addition, a mutated Hahsp17.7G4 promoter version (G4MutP) with a strong heat-shock induction was also induced in giant cells. The responses of the different promoters correlated with distinct HSE configurations, which might have implications on differential trans-activation. Furthermore, the shortest giant cell and heat-shock-inducible sHSP promoter version analysed in tobacco (−83pb Hahsp17.7G4) fully maintained its expression profile in Arabidopsis. Cyst nematodes did not induce the Hahsp17.7G4 promoter, revealing additional specificity in the nematode response. These findings, together with the fact that the class I sHSP products of endogenous genes accumulated specifically in tobacco giant cells, support the idea that these nematode-induced giant cells represent a transcriptional state very similar to that produced by heat shock regarding this class of genes. The high metabolic rate of giant cells may result in unfolded proteins requiring class I sHSPs as chaperones, which might, somehow, mimic heat-shock and/or other stress responses.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 28, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off