Distant diversity in dynamic class prediction

Distant diversity in dynamic class prediction Instead of using the same ensemble for all data instances, recent studies have focused on dynamic ensembles in which a new ensemble is chosen from a pool of classifiers for each new data instance. Classifiers agreement in the region where a new data instance resides in has been considered as a major factor in dynamic ensembles. We postulate that the classifiers chosen for a dynamic ensemble should behave similarly in the region in which the new instance resides, but differently outside of this area. In other words, we hypothesize that high local accuracy, combined with high diversity in other regions, is desirable. To verify the validity of this hypothesis we propose two approaches. The first approach focuses on finding the k-nearest data instances to the new instance, which then defines a neighborhood, and maximizes simultaneously local accuracy and distant diversity, based on data instances outside of the neighborhood. The second method makes use of an alternative definition of the neighborhood: all data instances are in the neighborhood. However, the importance of data instances for accuracy and diversity depends on the distance to the new instance. We demonstrate through several experiments that the distance-based diversity and accuracy outperform all benchmark methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Operations Research Springer Journals

Distant diversity in dynamic class prediction

Loading next page...
 
/lp/springer_journal/distant-diversity-in-dynamic-class-prediction-bQwZFzXsp8
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Business and Management; Operations Research/Decision Theory; Combinatorics; Theory of Computation
ISSN
0254-5330
eISSN
1572-9338
D.O.I.
10.1007/s10479-016-2328-8
Publisher site
See Article on Publisher Site

Abstract

Instead of using the same ensemble for all data instances, recent studies have focused on dynamic ensembles in which a new ensemble is chosen from a pool of classifiers for each new data instance. Classifiers agreement in the region where a new data instance resides in has been considered as a major factor in dynamic ensembles. We postulate that the classifiers chosen for a dynamic ensemble should behave similarly in the region in which the new instance resides, but differently outside of this area. In other words, we hypothesize that high local accuracy, combined with high diversity in other regions, is desirable. To verify the validity of this hypothesis we propose two approaches. The first approach focuses on finding the k-nearest data instances to the new instance, which then defines a neighborhood, and maximizes simultaneously local accuracy and distant diversity, based on data instances outside of the neighborhood. The second method makes use of an alternative definition of the neighborhood: all data instances are in the neighborhood. However, the importance of data instances for accuracy and diversity depends on the distance to the new instance. We demonstrate through several experiments that the distance-based diversity and accuracy outperform all benchmark methods.

Journal

Annals of Operations ResearchSpringer Journals

Published: Oct 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial