Distant diversity in dynamic class prediction

Distant diversity in dynamic class prediction Instead of using the same ensemble for all data instances, recent studies have focused on dynamic ensembles in which a new ensemble is chosen from a pool of classifiers for each new data instance. Classifiers agreement in the region where a new data instance resides in has been considered as a major factor in dynamic ensembles. We postulate that the classifiers chosen for a dynamic ensemble should behave similarly in the region in which the new instance resides, but differently outside of this area. In other words, we hypothesize that high local accuracy, combined with high diversity in other regions, is desirable. To verify the validity of this hypothesis we propose two approaches. The first approach focuses on finding the k-nearest data instances to the new instance, which then defines a neighborhood, and maximizes simultaneously local accuracy and distant diversity, based on data instances outside of the neighborhood. The second method makes use of an alternative definition of the neighborhood: all data instances are in the neighborhood. However, the importance of data instances for accuracy and diversity depends on the distance to the new instance. We demonstrate through several experiments that the distance-based diversity and accuracy outperform all benchmark methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Operations Research Springer Journals

Distant diversity in dynamic class prediction

Loading next page...
 
/lp/springer_journal/distant-diversity-in-dynamic-class-prediction-bQwZFzXsp8
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Business and Management; Operations Research/Decision Theory; Combinatorics; Theory of Computation
ISSN
0254-5330
eISSN
1572-9338
D.O.I.
10.1007/s10479-016-2328-8
Publisher site
See Article on Publisher Site

Abstract

Instead of using the same ensemble for all data instances, recent studies have focused on dynamic ensembles in which a new ensemble is chosen from a pool of classifiers for each new data instance. Classifiers agreement in the region where a new data instance resides in has been considered as a major factor in dynamic ensembles. We postulate that the classifiers chosen for a dynamic ensemble should behave similarly in the region in which the new instance resides, but differently outside of this area. In other words, we hypothesize that high local accuracy, combined with high diversity in other regions, is desirable. To verify the validity of this hypothesis we propose two approaches. The first approach focuses on finding the k-nearest data instances to the new instance, which then defines a neighborhood, and maximizes simultaneously local accuracy and distant diversity, based on data instances outside of the neighborhood. The second method makes use of an alternative definition of the neighborhood: all data instances are in the neighborhood. However, the importance of data instances for accuracy and diversity depends on the distance to the new instance. We demonstrate through several experiments that the distance-based diversity and accuracy outperform all benchmark methods.

Journal

Annals of Operations ResearchSpringer Journals

Published: Oct 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off