Dissociation of β-Sheet Stacking of Amyloid β Fibrils by Irradiation of Intense, Short-Pulsed Mid-infrared Laser

Dissociation of β-Sheet Stacking of Amyloid β Fibrils by Irradiation of Intense, Short-Pulsed... Structure of amyloid β (Aβ) fibrils is rigidly stacked by β-sheet conformation, and the fibril state of Aβ is profoundly related to pathogenesis of Alzheimer’s disease (AD). Although mid-infrared light has been used for various biological researches, it has not yet been known whether the infrared light changes the fibril structure of Aβ. In this study, we tested the effect of irradiation of intense mid-infrared light from a free-electron laser (FEL) targeting the amide bond on the reduction of β-sheet content in Aβ fibrils. The FEL reduced entire contents of proteins exhibiting β-sheet structure in brain sections from AD model mice, as shown by synchrotron-radiation infrared microscopy analysis. Since Aβ1-42 fibril absorbed a considerable FEL energy at amide I band (6.17 μm), we irradiated the FEL at 6.17 μm and found that β-sheet content of naked Aβ1-42 fibril was decreased using infrared microscopic analysis. Consistent with the decrease in the β-sheet content, Congo-red signal is decreased after the irradiation to Aβ1-42 fibril. Furthermore, electron microscopy analysis revealed that morphologies of the fibril and proto-fibril were largely changed after the irradiation. Thus, mid-infrared light dissociates β-sheet structure of Aβ fibrils, which justifies exploration of possible laser-based therapy for AD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular and Molecular Neurobiology Springer Journals

Dissociation of β-Sheet Stacking of Amyloid β Fibrils by Irradiation of Intense, Short-Pulsed Mid-infrared Laser

Loading next page...
 
/lp/springer_journal/dissociation-of-sheet-stacking-of-amyloid-fibrils-by-irradiation-of-cOL6rlenIT
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Cell Biology; Neurobiology
ISSN
0272-4340
eISSN
1573-6830
D.O.I.
10.1007/s10571-018-0575-8
Publisher site
See Article on Publisher Site

Abstract

Structure of amyloid β (Aβ) fibrils is rigidly stacked by β-sheet conformation, and the fibril state of Aβ is profoundly related to pathogenesis of Alzheimer’s disease (AD). Although mid-infrared light has been used for various biological researches, it has not yet been known whether the infrared light changes the fibril structure of Aβ. In this study, we tested the effect of irradiation of intense mid-infrared light from a free-electron laser (FEL) targeting the amide bond on the reduction of β-sheet content in Aβ fibrils. The FEL reduced entire contents of proteins exhibiting β-sheet structure in brain sections from AD model mice, as shown by synchrotron-radiation infrared microscopy analysis. Since Aβ1-42 fibril absorbed a considerable FEL energy at amide I band (6.17 μm), we irradiated the FEL at 6.17 μm and found that β-sheet content of naked Aβ1-42 fibril was decreased using infrared microscopic analysis. Consistent with the decrease in the β-sheet content, Congo-red signal is decreased after the irradiation to Aβ1-42 fibril. Furthermore, electron microscopy analysis revealed that morphologies of the fibril and proto-fibril were largely changed after the irradiation. Thus, mid-infrared light dissociates β-sheet structure of Aβ fibrils, which justifies exploration of possible laser-based therapy for AD.

Journal

Cellular and Molecular NeurobiologySpringer Journals

Published: Feb 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off