Dissociation of ligand-induced internalization of CXCR-4 from its co-receptor activity for HIV-1 Env-mediated membrane fusion

Dissociation of ligand-induced internalization of CXCR-4 from its co-receptor activity for HIV-1... The C-terminal cytoplasmic tail of chemokine receptors is important for their internalization upon ligand binding. We generated several deletion mutants of the C-terminal cytoplasmic tail of CXCR-4, a co-receptor for T cell line tropic strains of human immunodeficiency virus type 1 (HIV-1), to know whether or not co-receptor internalization is associated with HIV-1 entry. Our data showed that the removal of C-terminal 15 amino acid residues of the cytoplasmic tail from CXCR-4 completely abolished its internalization, but did not affect the co-receptor activity at all. Co-receptor activity was fully retained even when all 45 amino acid residues in the C-terminal cytoplasmic tail had been deleted. These data indicated that no cytoplasmic tail nor internalization of CXCR-4 is required for its co-receptor activity for HIV-1 entry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Dissociation of ligand-induced internalization of CXCR-4 from its co-receptor activity for HIV-1 Env-mediated membrane fusion

Loading next page...
 
/lp/springer_journal/dissociation-of-ligand-induced-internalization-of-cxcr-4-from-its-co-KacbM8UrWV
Publisher
Springer-Verlag
Copyright
Copyright © Wien by 1998 Springer-Verlag/
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050050337
Publisher site
See Article on Publisher Site

Abstract

The C-terminal cytoplasmic tail of chemokine receptors is important for their internalization upon ligand binding. We generated several deletion mutants of the C-terminal cytoplasmic tail of CXCR-4, a co-receptor for T cell line tropic strains of human immunodeficiency virus type 1 (HIV-1), to know whether or not co-receptor internalization is associated with HIV-1 entry. Our data showed that the removal of C-terminal 15 amino acid residues of the cytoplasmic tail from CXCR-4 completely abolished its internalization, but did not affect the co-receptor activity at all. Co-receptor activity was fully retained even when all 45 amino acid residues in the C-terminal cytoplasmic tail had been deleted. These data indicated that no cytoplasmic tail nor internalization of CXCR-4 is required for its co-receptor activity for HIV-1 entry.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off