Dissociation and propagation for approximate lifted inference with standard relational database management systems

Dissociation and propagation for approximate lifted inference with standard relational database... Probabilistic inference over large data sets is a challenging data management problem since exact inference is generally #P-hard and is most often solved approximately with sampling-based methods today. This paper proposes an alternative approach for approximate evaluation of conjunctive queries with standard relational databases: In our approach, every query is evaluated entirely in the database engine by evaluating a fixed number of query plans, each providing an upper bound on the true probability, then taking their minimum. We provide an algorithm that takes into account important schema information to enumerate only the minimal necessary plans among all possible plans. Importantly, this algorithm is a strict generalization of all known PTIME self-join-free conjunctive queries: A query is in PTIME if and only if our algorithm returns one single plan. Furthermore, our approach is a generalization of a family of efficient ranking methods from graphs to hypergraphs. We also adapt three relational query optimization techniques to evaluate all necessary plans very fast. We give a detailed experimental evaluation of our approach and, in the process, provide a new way of thinking about the value of probabilistic methods over non-probabilistic methods for ranking query answers. We also note that the techniques developed in this paper apply immediately to lifted inference from statistical relational models since lifted inference corresponds to PTIME plans in probabilistic databases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Dissociation and propagation for approximate lifted inference with standard relational database management systems

Loading next page...
 
/lp/springer_journal/dissociation-and-propagation-for-approximate-lifted-inference-with-FzH2pVsx9G
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-016-0434-5
Publisher site
See Article on Publisher Site

Abstract

Probabilistic inference over large data sets is a challenging data management problem since exact inference is generally #P-hard and is most often solved approximately with sampling-based methods today. This paper proposes an alternative approach for approximate evaluation of conjunctive queries with standard relational databases: In our approach, every query is evaluated entirely in the database engine by evaluating a fixed number of query plans, each providing an upper bound on the true probability, then taking their minimum. We provide an algorithm that takes into account important schema information to enumerate only the minimal necessary plans among all possible plans. Importantly, this algorithm is a strict generalization of all known PTIME self-join-free conjunctive queries: A query is in PTIME if and only if our algorithm returns one single plan. Furthermore, our approach is a generalization of a family of efficient ranking methods from graphs to hypergraphs. We also adapt three relational query optimization techniques to evaluate all necessary plans very fast. We give a detailed experimental evaluation of our approach and, in the process, provide a new way of thinking about the value of probabilistic methods over non-probabilistic methods for ranking query answers. We also note that the techniques developed in this paper apply immediately to lifted inference from statistical relational models since lifted inference corresponds to PTIME plans in probabilistic databases.

Journal

The VLDB JournalSpringer Journals

Published: Jul 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off