Dissipative and non-dissipative single-qubit channels: dynamics and geometry

Dissipative and non-dissipative single-qubit channels: dynamics and geometry Single-qubit dissipative and non-dissipative channels, set in the general scenario of a system’s interaction with a squeezed thermal bath, are compared in the Choi isomorphism framework, to bring out their contrasting rank and geometric properties. The equivalence of commutativity between the signal states and the Kraus operators to that between the system and interaction Hamiltonian, and thus to non-dissipativeness, is pointed out. Two distinct unitarily equivalent Kraus representations of the dissipative channel, one based on the Choi isomorphism, and the other based on an ansatz, are used to illustrate that the orthogonality of Kraus operators under the Hilbert–Schmidt inner product is not a unitary invariant. Unlike the non-dissipative (Pauli) channels, the dissipative (squeezed generalized amplitude damping) channels do not form a convex set. Further, whereas the rank of Pauli channels can be any positive integer up to 4, that of the amplitude damping ones is either 2 or 4. In the latter case, a noise range is identified where environmental squeezing counteracts the effect of thermal decoherence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Dissipative and non-dissipative single-qubit channels: dynamics and geometry

Loading next page...
Springer US
Copyright © 2013 by Springer Science+Business Media New York
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial