Disseminating streaming data in a dynamic environment: an adaptive and cost-based approach

Disseminating streaming data in a dynamic environment: an adaptive and cost-based approach In a distributed stream processing system, streaming data are continuously disseminated from the sources to the distributed processing servers. To enhance the dissemination efficiency, these servers are typically organized into one or more dissemination trees . In this paper, we focus on the problem of constructing dissemination trees to minimize the average loss of fidelity of the system. We observe that existing heuristic-based approaches can only explore a limited solution space and hence may lead to sub-optimal solutions. On the contrary, we propose an adaptive and cost-based approach. Our cost model takes into account both the processing cost and the communication cost. Furthermore, as a distributed stream processing system is vulnerable to inaccurate statistics, runtime fluctuations of data characteristics, server workloads, and network conditions, we have designed our scheme to be adaptive to these situations: an operational dissemination tree may be incrementally transformed to a more cost-effective one. Our adaptive strategy employs distributed decisions made by the distributed servers independently based on localized statistics collected by each server at runtime. For a relatively static environment, we also propose two static tree construction algorithms relying on apriori system statistics. These static trees can also be used as initial trees in a dynamic environment. We apply our schemes to both single- and multi-object dissemination. Our extensive performance study shows that the adaptive mechanisms are effective in a dynamic context and the proposed static tree construction algorithms perform close to optimal in a static environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Disseminating streaming data in a dynamic environment: an adaptive and cost-based approach

Loading next page...
 
/lp/springer_journal/disseminating-streaming-data-in-a-dynamic-environment-an-adaptive-and-nS1JgIKkEf
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0077-7
Publisher site
See Article on Publisher Site

Abstract

In a distributed stream processing system, streaming data are continuously disseminated from the sources to the distributed processing servers. To enhance the dissemination efficiency, these servers are typically organized into one or more dissemination trees . In this paper, we focus on the problem of constructing dissemination trees to minimize the average loss of fidelity of the system. We observe that existing heuristic-based approaches can only explore a limited solution space and hence may lead to sub-optimal solutions. On the contrary, we propose an adaptive and cost-based approach. Our cost model takes into account both the processing cost and the communication cost. Furthermore, as a distributed stream processing system is vulnerable to inaccurate statistics, runtime fluctuations of data characteristics, server workloads, and network conditions, we have designed our scheme to be adaptive to these situations: an operational dissemination tree may be incrementally transformed to a more cost-effective one. Our adaptive strategy employs distributed decisions made by the distributed servers independently based on localized statistics collected by each server at runtime. For a relatively static environment, we also propose two static tree construction algorithms relying on apriori system statistics. These static trees can also be used as initial trees in a dynamic environment. We apply our schemes to both single- and multi-object dissemination. Our extensive performance study shows that the adaptive mechanisms are effective in a dynamic context and the proposed static tree construction algorithms perform close to optimal in a static environment.

Journal

The VLDB JournalSpringer Journals

Published: Nov 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off