Dissection of abscisic acid signal transduction pathways in barley aleurone layers

Dissection of abscisic acid signal transduction pathways in barley aleurone layers Abscisic acid (ABA) induces genes that are highly expressed during late embryogenesis, but suppresses gibberellin (GA)-responsive genes essential for seed germination and seedling growth. Promoter elements necessary and sufficient for ABA up- and down-regulation of gene expression have been previously defined in barley aleurone layers. We have studied the effect of a protein phosphatase 2C, ABI1, an ABA-inducible protein kinase, PKABA1, and a transcription factor, VP1, on ABA action in a barley aleurone transient expression system. The observations have allowed us to dissect ABA signal transduction pathways leading to either induction or suppression of gene expression. The ABA induction of embryogenesis genes is highly inhibited in the presence of a mutated protein phosphatase 2C, encoded by the abi1-1 dominant mutant gene that is known to block ABA responses in Arabidopsis. However, the abi1-1 gene product has no effect on the ABA suppression of a GA-responsive α-amylase gene. On the other hand, PKABA1 suppresses the expression of α-amylase genes, but has little effect on ABA up-regulated genes. Therefore, it appears that ABA induction and suppression follow two separate signal transduction pathways with the former inhibited by ABI1 and the latter modulated by PKABA1. The presence of VP1 enhances the ABA induction of late embryogenesis genes, but also suppresses germination specific genes. A schematic model based on these observations is presented to explain the effect of these regulatory proteins on ABA-mediated gene expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Dissection of abscisic acid signal transduction pathways in barley aleurone layers

Loading next page...
 
/lp/springer_journal/dissection-of-abscisic-acid-signal-transduction-pathways-in-barley-Zw0ru0s9xr
Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1011667312754
Publisher site
See Article on Publisher Site

Abstract

Abscisic acid (ABA) induces genes that are highly expressed during late embryogenesis, but suppresses gibberellin (GA)-responsive genes essential for seed germination and seedling growth. Promoter elements necessary and sufficient for ABA up- and down-regulation of gene expression have been previously defined in barley aleurone layers. We have studied the effect of a protein phosphatase 2C, ABI1, an ABA-inducible protein kinase, PKABA1, and a transcription factor, VP1, on ABA action in a barley aleurone transient expression system. The observations have allowed us to dissect ABA signal transduction pathways leading to either induction or suppression of gene expression. The ABA induction of embryogenesis genes is highly inhibited in the presence of a mutated protein phosphatase 2C, encoded by the abi1-1 dominant mutant gene that is known to block ABA responses in Arabidopsis. However, the abi1-1 gene product has no effect on the ABA suppression of a GA-responsive α-amylase gene. On the other hand, PKABA1 suppresses the expression of α-amylase genes, but has little effect on ABA up-regulated genes. Therefore, it appears that ABA induction and suppression follow two separate signal transduction pathways with the former inhibited by ABI1 and the latter modulated by PKABA1. The presence of VP1 enhances the ABA induction of late embryogenesis genes, but also suppresses germination specific genes. A schematic model based on these observations is presented to explain the effect of these regulatory proteins on ABA-mediated gene expression.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off