Disrupted architecture of large-scale brain functional connectivity networks in patients with generalized tonic–clonic seizure

Disrupted architecture of large-scale brain functional connectivity networks in patients with... Generalized tonic–clonic seizure (GTCS) is characterized by the abnormal functional organization among distant brain regions. Previous studies in GTCS that have comprehensively examined connectivity abnormalities across the complete range of large-scale brain networks remain relatively rare. Here, we employed an amount of regions of interest to investigate the intra- and inter-connections among seven large-scale brain networks in GTCS and healthy controls. Network contingency analysis revealed that patients with GTCS exhibit significantly increased connectivity between default mode network (DMN) and frontoparietal network (FPN), between DMN and dorsal attention network, and between somatomotor network and limbic network, and decreased functional connectivity within FPN (all p values were Bonferroni corrected). Consistent with existing evidence, the disrupted functional architecture of the DMN and task-positive network may be related to self-related processes and deficits in cognitive control and attention in patients. These findings support the notion that GTCS is associated with disrupted architecture in large-scale brain networks, providing information for better understanding of the pathophysiological mechanisms of GTCS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Informatics Springer Journals

Disrupted architecture of large-scale brain functional connectivity networks in patients with generalized tonic–clonic seizure

Loading next page...
 
/lp/springer_journal/disrupted-architecture-of-large-scale-brain-functional-connectivity-GDtpWeWxOI
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Computer Science; Computing Methodologies; Bioinformatics; Health Informatics; Computer Imaging, Vision, Pattern Recognition and Graphics; Computer Applications; Statistics for Life Sciences, Medicine, Health Sciences
eISSN
2196-0089
D.O.I.
10.1186/s40535-017-0045-2
Publisher site
See Article on Publisher Site

Abstract

Generalized tonic–clonic seizure (GTCS) is characterized by the abnormal functional organization among distant brain regions. Previous studies in GTCS that have comprehensively examined connectivity abnormalities across the complete range of large-scale brain networks remain relatively rare. Here, we employed an amount of regions of interest to investigate the intra- and inter-connections among seven large-scale brain networks in GTCS and healthy controls. Network contingency analysis revealed that patients with GTCS exhibit significantly increased connectivity between default mode network (DMN) and frontoparietal network (FPN), between DMN and dorsal attention network, and between somatomotor network and limbic network, and decreased functional connectivity within FPN (all p values were Bonferroni corrected). Consistent with existing evidence, the disrupted functional architecture of the DMN and task-positive network may be related to self-related processes and deficits in cognitive control and attention in patients. These findings support the notion that GTCS is associated with disrupted architecture in large-scale brain networks, providing information for better understanding of the pathophysiological mechanisms of GTCS.

Journal

Applied InformaticsSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off